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Motivation: Use cases
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Challenges of Deploying LLMs in Streaming Applications

• Urgent need for LLMs in streaming 
applications such as multi-round 
dialogues, where long interactions are 
needed.
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https://github.com/tomaarsen/attention_sinks

• Challenges:

• Extensive memory consumption during 

the decoding stage.

• Inability of popular LLMs to generalize to 

longer text sequences.
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The Problem of Long Context: Large KV Cache
The KV cache could be large with long context
• During Transformer decoding (GPT-style), we need to store the Keys and Values of all previous 

tokens so that we can perform the attention computation, namely the KV cache

• Only need the current query token
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Image credit: https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html



 

The Problem of Long Context: Large KV Cache
The KV cache could be large with long context
• We can calculate the memory required to store the KV cache 

• Take Llama-2-7B as an example


• Now we calculate the KV cache size under  and different sequence lengths.

• Quickly larger than model weights

BS = 4
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The Limits of Window Attention
• A natural approach — window attention: caching only the most recent Key-Value states.

• Drawback: model collapses when the text length surpasses the cache size, when the initial token 

is evicted.
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(b) Window Attention
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Difficulties of Other Methods
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(a) Dense Attention
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(c) StreamingLLM (ours)

Attention Sink: 
always pin in KV cache
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KV cache size grows linearly with 
the sequence length; perplexity 
explodes after exceeding the max 
context length.

KV cache size is constant; but 
perplexity explodes after 
sequence length exceeds the KV 
cache size (first token evicted).

perplexity doesn’t explode; 
KV cache size is constant. 



The “Attention Sink” Phenomenon
• Observation: initial tokens have large attention scores, even if they're not semantically significant.

• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.
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Understanding Why Attention Sinks Exist
The Rationale Behind Attention Sinks
• SoftMax operation's role in creating attention 

sinks — attention scores have to sum up to one 
for all contextual tokens.


• Initial tokens' advantage in becoming sinks due 
to their visibility to subsequent tokens, rooted 
in autoregressive language modeling.
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• Does the importance of the initial tokens arise 
from their position or their semantics?

• We found adding initial four “\n”s can also 

recover perplexity.

• Therefore, it is position!



• Objective: Enable LLMs trained with a finite attention window to handle infinite text lengths 
without additional training.


• Key Idea: preserve the KV of attention sink tokens, along with the sliding window's KV to 
stabilize the model's behavior.

StreamingLLM: Using Attention Sinks for Infinite Streams
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(d) StreamingLLM (ours)

Attention Sink
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O(TL) PPL: 5.40
Can perform efficient and stable 
language modeling on long texts.
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• Use positions in the cache instead of those in the original text.

Positional Encoding Assignment
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Attention Sinks
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Streaming Performance
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• Comparison between dense attention, window attention, and sliding window w/ re-computation.


• Dense attention fails beyond pre-training attention window size.

• Window attention fails after input exceeds cache size (initial tokens evicted).

• StreamingLLM shows stable performance; perplexity close to sliding window with re-computation baseline.



Streaming Performance
Super Long Language Modeling
• With StreamingLLM, model families include Llama-2, MPT, Falcon, and Pythia can now effectively 

model up to 4 million tokens.
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Efficiency
• Comparison baseline: The sliding window with re-computation, a method that is 

computationally heavy due to quadratic attention computation within its window.

• StreamingLLM provides up to 22.2x speedup over the baseline, making LLMs for real-time 

streaming applications feasible.
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Ablation Study: #Attention Sinks
• The number of attention sinks that need to be introduced to recover perplexity.

• 4 attention sinks are generally enough.
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Pre-training with a Dedicated Attention Sink Token

• Idea: Why 4 attention sinks? Can we train a LLM that need only one single attention sink? Yes!

• Method: Introduce an extra learnable token at the start of all training samples to act as a 

dedicated attention sink.

• Result: This pre-trained model retains performance in streaming cases with just this single sink 

token, contrasting with vanilla models that require multiple initial tokens.

18



Attention Sinks in Other Transformers
Encoder Models: ViT and BERT
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Vision Transformers Need Registers

BERT

ViT



Can StreamingLLM give us infinite context?
• Non-stop chatting ≠ Infinite context

• Tokens that are evicted from cache cannot be attended.
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Thanks for Listening!
• We propose StreamingLLM, enabling the streaming deployment of LLMs.


• Paper: https://arxiv.org/abs/2309.17453 

• Code:  https://github.com/mit-han-lab/streaming-llm 6.2K Stars 

• Demo: https://youtu.be/UgDcZ3rvRPg
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https://github.com/mit-han-lab/streaming-llm
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