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Research Overview
TinyML and Efficient Deep Learning Computing

3

• Motivation:
- Deep learning is requiring more computation than ever; training and inference become very costly.
- Enable deep learning on small, low-power devices (TinyML). 
- Greener AI: reduce model size, latency, memory, energy; increase throughput, accuracy, scalability, productivity.

• Approach:
-Model compression algorithms that shrink neural networks without compromising accuracy: pruning, quantization, 

distillation, hardware-aware neural architecture search, novel neural architectures and building blocks.
- Efficient systems and hardware that implements the algorithmic innovations into measured speedup. Exploit sparsity 

and redundancy with algorithm and system co-design.
- Application-specific optimizations for generative AI, including large language model and diffusion model. Invent new 

operators to efficiently perform high-resolution image generation and long text generation.

• Impact:
- Pioneered the area of TinyML, at the intersection between machine learning and systems.
-Model compression, pruning and quantization have become the standard lexicon of the field.
- Research is adopted by industry (NVIDIA, AMD, Xilinx, Intel, Google, HuggingFace), with two startups acquired.
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Thrust 1: Tiny Machine Learning (TinyML)
1.1 Tiny Inference

4

Motivation: 
•Deploy neural networks on edge devices. 
•Hardware-in-the loop neural architecture search is essential.
• Large design space: manual design is costly; automated design is needed.

Innovations: 
•Once-For-All Network [ICLR’20]: train a single, powerful super network that 

can generate many subnetworks, while only taking up the memory footprint 
of a single full model. Search the best subnetwork based on hardware 
resources; build a latency predictor to provide hardware feedback. 
•MCUNet [NeurIPS’20/21] brings deep learning to microcontrollers (MCUs).
- TinyNAS: hardware-aware neural architecture search.
- TinyEngine: efficient inference system co-designed with TinyNAS.
- Pioneering work running neural networks on micro controllers.

Impact: 
• Featured article by IEEE Circuits and Systems Magazine. MCUNet is adapted

by many universities as course material, including Harvard, Princeton, U 
Penn, CMU. Once-for-all network is adopted by PyTorch, SONY and ADI. 

MCUNet

Once-for-all Network: train one get many

https://ieeexplore.ieee.org/document/10284551
https://pytorch.org/hub/pytorch_vision_once_for_all/
https://blog.nnabla.org/release/fairnas-and-ofa/
https://github.com/MaximIntegratedAI/ai8x-training
https://news.mit.edu/2021/tiny-machine-learning-design-alleviates-bottleneck-memory-usage-iot-devices-1208
https://hanlab.mit.edu/projects/ofa


Thrust 1: Tiny Machine Learning (TinyML)
1.2 Tiny Training
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• Motivation: Enables IoT devices to adapt to new data collected from the sensors by fine-tuning a pre-trained model 
without sending data to the cloud; enable life-long on-device learning with better privacy.

• Challenge: Much harder than inference: back-propagation requires storing intermediate activations => large memory.
• Innovations: On-device training under 256KB memory [NeurIPS’22]

• Quantization-aware scaling: perform training with low precision and save memory, while stabilizing convergence. 
• Sparse update: skip the gradient computation of less important layers and sub-tensors, save memory.
• Tiny training engine: prunes the backward computation graph to support sparse update; offloads the runtime 

auto-diff to compile time.
• Result: the first solution to enable tiny on-device training of convolutional neural networks under 256KB SRAM and 

1MB Flash. Using less than 1/1000 of the memory of PyTorch and TensorFlow [demo]

https://youtu.be/0pUFZYdoMY8?si=zaqhmis3AJ-M7NKM


Contribution 2: Accelerating AI with Sparsity
Exploit sparsity with algorithm, system, hardware co-design
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• Motivation: Sparsity in neural networks arises where not all neurons are connected.
Sparsity plays a pivotal role to save computation.

• Prior work: I designed the first accelerator to exploit weight sparsity (EIE @Stanford).
• New Innovations:

Papers using TorchSparse:

2. System & hardware support for sparsity:
- TorchSparse [MLSys’22, MICRO’23]: optimizes irregular computation by 

reordering the outputs based on input bitmasks, minimizing padding 
overhead, enabling load balancing, and reducing memory footprint. 
- Built specialized hardware to accelerate sparse operations: top-k selection, 

non-zero merger, zero-elimination and effectively skip zero computations. 
[SpAtten, HPCA’21], [SpArch, HPCA’20], [@PointAcc, MICRO’21]

1. Identify new sources of sparsity:
- SpAtten [HPCA’21] introduces “sparse attention” and token pruning: not all tokens 

need to attend to each other. Prune away less important tokens. 
-New input sparsity opportunities in point cloud [NeurIPS’19, oral], multi-sensor 

fusion [ICRA’23], vision transformer [CVPR’23], and diffusion models [NeurIPS’22].

https://hanlab.mit.edu/projects/spatten
https://hanlab.mit.edu/projects/sparch
https://hanlab.mit.edu/projects/pointacc
https://hanlab.mit.edu/projects/pvcnn
https://hanlab.mit.edu/projects/bevfusion
https://hanlab.mit.edu/projects/bevfusion
https://hanlab.mit.edu/projects/sparsevit
https://hanlab.mit.edu/projects/sige


Thrust 3: Efficient Generative AI
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3.1 Micro Design: Low Precision

• Background: GenAI models are 1000x bigger than traditional CNNs, posing new 
compute challenge. Moore’s law: 2x transistors / year; LLM: 4x larger / year.

• Challenge: Quantization and low-precision can bridge the gap, unfortunately, 
traditional quantization methods does not work for LLM due to the outliers, which 
stretch the quantization range, leaving few effective bits for most values. 

• Innovations: 
• SmoothQuant (ICML’23) is a novel approach that smoothes the activation 

outliers by migrating the quantization difficulty from activations to weights with 
a mathematically equivalent transformation. No fine-tuning is needed.

• AWQ (MLSys’24) further quantize LLM to 4-bit.                     implements 4-bit LLM, 
making it deployable on the edge.

• Impact: 
• AWQ has 920K+ downloads on HuggingFace. 
• AWQ is the key model compression technology behind NVIDIA ChatRTX for AI PC. 
• SmoothQuant and AWQ has been integrated by NVIDIA TensorRT-LLM, Intel 

Neural Compressor, Berkeley FastChat, Google Cloud, HuggingFace Transformers, 
HuggingFace TGI, and more. 

fp16 int8 int4

Smooth
Quant

AWQ

and AWQ enable 
LLM inference locally on a laptop.

SmoothQuant smooths away the outliers

http://hanlab.mit.edu/projects/smoothquant
http://hanlab.mit.edu/projects/awq
https://github.com/NVIDIA/trt-llm-rag-windows


Contribution 3: Efficient Generative AI
3.2 Macro Design: New Building Blocks
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• Background: GenAI models are 1000x bigger than traditional CNNs, posing new 
compute challenge.

• Challenge: 
• Transformers’ computation grows quadratically with the number of tokens, 

making high-resolution and long text stream generation very expensive. 
We need new building blocks.

• Innovations: 
• EfficientViT (ICCV’23) for high resolution: introduced a light-weight operator 

with linear attention plus depth-wise convolution to break the efficiency 
bottleneck of conventional attention. An order of magnitude faster.

• StreamingLLM (ICLR’24) for long text: unveils the "attention sink" 
phenomenon where initial tokens receive strong attention and should never 
be evicted from the KV cache, the rest token use “windowed attention”. 
StreamingLLM can generate infinite long text streams with fixed memory. 

• Impact: StreamingLLM excited the community with 6K Github stars and many 
followups about the “attention sink” found in other kinds of transformers, 
adopted by NVIDIA and Intel. EfficientViT-SAM is adopted by NVIDIA.

SegFormer (baseline):1.6FPS, 82.4mIoU
building block: softmax attention

EfficientViT: 21.8FPS (13x faster), 82.7mIoU
building block: linear attention

Both measured on Nvidia Jetson AGX Orin with TensorRT, fp16

https://hanlab.mit.edu/projects/efficientvit
http://hanlab.mit.edu/projects/streamingllm


Research Impact
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• Model compression, pruning and quantization have become the standard lexicon of our field. They are now the 
industry’s standard practice.

• Citations: 55,100. Since 2019: 49,700.
• Actively contribute to open-source community: 30+ repositories and 31,000+ Github stars.
• LLM quantization algorithms (SmoothQuant and AWQ) has been adopted by NVIDIA, Intel, Google Cloud, Berkeley, 

HuggingFace for efficient LLM inference. 
• Once-For-All algorithm for hardware-aware neural architecture search is adopted by PyTorch, SONY, ADI.
• ProxylessNAS is adopted by PyTorch and Microsoft for efficient neural architecture search.
• StreamingLLM is adopted by NVIDIA and Intel for long text generation and efficient LLM inference. 6K GitHub stars.
• Pruning, sparsity and quantization has influenced AI chips from: NVIDIA (sparse TenorCore), Apple, AMD. 
• Research covered by 30+ press articles, including IEEE Spectrum, Wired, MIT News, Venture Beat; spotlighted by MIT 

home page four times.
• Startups: 

• Cofounded DeePhi to commercialize deep learning accelerators, acquired by Xilinx.
• Cofounded OmniML to commercialize model compression software, acquired by NVIDIA.

https://hanlab.mit.edu/projects/smoothquant
https://hanlab.mit.edu/projects/awq
https://github.com/NVIDIA/TensorRT-LLM
https://www.intel.com/content/www/us/en/developer/articles/case-study/q8-chat-efficient-generative-ai-experience-xeon.html
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/161
https://github.com/lm-sys/FastChat/blob/main/docs/awq.md
https://huggingface.co/docs/transformers/main/en/quantization
https://hanlab.mit.edu/projects/ofa
https://pytorch.org/hub/pytorch_vision_once_for_all/
https://blog.nnabla.org/release/fairnas-and-ofa/
https://github.com/MaximIntegratedAI/ai8x-training
https://hanlab.mit.edu/projects/proxylessnas
https://pytorch.org/hub/pytorch_vision_proxylessnas/
https://github.com/Microsoft/nni/blob/v1.6/docs/en_US/NAS/Proxylessnas.md
https://hanlab.mit.edu/projects/streamingllm
https://twitter.com/NVIDIAAIDev/status/1767642222122397727
https://medium.com/intel-analytics-software/efficient-streaming-llm-with-intel-extension-for-transformers-runtime-31ee24577d26
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://apple.github.io/coremltools/docs-guides/source/palettization-overview.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html


Teaching: TinyML course
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Lab 1 - Pruning

Lab 2 - 
Quantization

Lab 3 — Neural 
Architecture Search

Lab 5 - LLM 
Deployment on 

Laptop

Lab 4 - LLM 
Compression 

Lab 0 - Hands-on 
PyTorch

• New course "TinyML and Efficient Deep Learning Computing" (6.5940), 
Fall 2022/2023. Website: efficientml.ai.

• Introduces efficient AI computing techniques that enable powerful 
machine learning applications on resource-constrained devices. 

• Students get hands-on experience implementing MCUNet on 
microcontrollers and deploying large language models (Llama2-7B) on a 
laptop. 

https://efficientml.ai


Mentoring & Student Awards
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Zhijian Liu:
• Qualcomm Innovation Fellowship, 2021
• Rising Star in Machine Learning and Systems, 

by MLCommons, 2023
• Rising Star in Data Science, by UChicago and UCSD, 

2023
• First Place, 6th AI Driving Olympics, NuScenes

Segmentation Challenge, 2021

Yujun Lin, Ji Lin:
• Qualcomm Innovation Fellowship, 2021

Student Awards:
Hanrui Wang: received tenure track offers from UIUC and Duke
• Rising Star in Solid-State Circuits at WiC ISSCC, 2024
• Rising Star in Machine Learning and Systems, by MLCommons, 2023
• Best Demo Award at Design Automation Conference (DAC), 2023
• Best Poster Award at NSF Athena AI Institute Annual Meeting, 

2022/2023
• First Place in ACM Student Research Competition, 2022
• DAC Young Fellowship, 2022
• Qualcomm Innovation Fellowship, 2021
• Baidu Fellowship, 2021
• Analog Devices Outstanding Student Designer Award, 2021

Han Cai:
• First Place, 3rd Low Power Computer Vision Challenge, 2019
• First Place, 4th Low Power Computer Vision Challenge, 2020
• First Place, 5th Low Power Computer Vision Challenge, 2020
• Qualcomm Innovation Fellowship



Galary
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on-device facial landmark
by "once-for-all" network

on-device pose estimation
by "once-for-all" network

Raspery Pi Cluster BEVFusion & TorchSparse

MCUNet on a Microcontroller SpAtten chip 
(w/ Anantha Chandrakasan)

TinyChat and On-Device LLM


