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Task: DNN Monocular Depth Estimation
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We use a DNN trained to predict per-pixel depth from a single RGB 
image to reduce energy and form factor of depth sensor

DNN 
predictionRGB
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ground-truth
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Deep neural network 
(DNN)
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During training, access to ground-truth to see where DNN prediction has high error
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During deployment, no access to ground-truth or error of DNN predictions

DNN
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Goal: DNNs that fail gracefully and estimate high-quality uncertainty on predictions

DNN

Task: Uncertainty Estimation for DNN Monocular Depth 
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High quality uncertainty estimation correlates uncertainty to error
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● We can ask the DNN to predict its own (aleatoric) 
uncertainty via a learned loss function 

● Advantages:
○ Captures uncertainty in the data that was captured 

during training (e.g., DNN is prone to error when 
lighting is poor)

○ Computationally efficient
● Disadvantages:

○ Does not capture (epistemic) uncertainty inherent to 
the DNN model weights itself where the DNN does 
not know what it hasn’t trained on before
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Total uncertainty = 
model uncertainty + data uncertainty 

average(DNNs’ predicted σ2)
variance(DNNs’ predicted μ depth) 
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2

Each DNN predicts mean and variance 
of depth (Gaussian)
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... ... ... ... ... ... ... ... ... ...

Total uncertainty = 
model uncertainty + data uncertainty 

average(DNNs’ predicted σ2)
variance(DNNs’ predicted μ depth) 

When M = 10, 10X inferences per input, 
making uncertainty estimation 

extremely computationally expensive



Contribution: Uncertainty from Motion (UfM)

We introduce a new algorithm called Uncertainty from Motion (UfM) 

which enables close to state-of-the-art ensemble uncertainty quality while 
only requiring one DNN inference per input.

RGB input Depth prediction Uncertainty from Motion

close far
low high
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https://docs.google.com/file/d/1gLerklrtiufzWRgXYAwQKgTu85KfsNAV/preview
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Algorithm Overview

UfM enables us to obtain near ensemble uncertainty quality at a fraction of the 
latency and energy cost

where instead of running M 
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DNN 1

...

DNN 2

We find noisy correspondences of 
views of the same point in 3D space 

using reprojection 
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DNN 2

We merge the different DNNs’ predicted 
Gaussians of the same point in 3D space 

via a mixture of Gaussians update
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Comparable Uncertainty Quality to Ensembles

We show that the uncertainty quality is comparable to SOTA ensemble method

UfM
ECE   = 0.26

Ensemble
ECE   = 0.30

close far
low high

(ensemble video sped up x6 to compare 
equivalent frames) 
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RGB Depth Pred. UncertaintyGround-truth Error
NLL 

(lower is better)

FCDenseNet architecture on Nvidia RTX 2080 Ti

https://docs.google.com/file/d/12HSzB-p9rF9LikP-5G-JGtZEGJkoMOYW/preview


Lower Latency and Energy with UfM

Near ensemble uncertainty quality at a fraction of the latency and energy cost

RGB Depth Pred. UncertaintyGround-truth Error

close far
low high

NLL 
(lower is better)

UfM
32 fps
5 Joules/frame 

Ensemble
5 fps
45 Joules/frame
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FCDenseNet architecture on Nvidia RTX 2080 Ti

https://docs.google.com/file/d/1FuXzUTqLMjKmJrRucsTRNUaIB1M0i2mV/preview


Key Takeaways

1) DNN uncertainty conventionally requires M inferences per input since it 
requires a “panel of experts” (e.g., an ensemble) to measure 
disagreement. 

2) We can obtain near ensemble uncertainty quality with one inference per 
input, lowering the latency and energy cost of uncertainty estimation.  

3) UfM uses the temporal redundancy in video inputs to merge per-pixel 
predictions across a sequence that are multiple views of the same point.

Sudhakar, Soumya, Sertac Karaman, and Vivienne Sze. "Uncertainty from Motion for DNN 
Monocular Depth Estimation." IEEE International Conference on Robotics and Automation 
(ICRA). May 2022.

Code to be released on Github
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