SecureLoop: Design Space Exploration of Secure DNN Accelerators

Kyungmi Lee, Mengjia Yan, Joel S. Emer*, Anantha P. Chandrakasan MIT, *MIT/NVIDIA

ML Needs Both Security and Performance

Applications require security

Accelerator design requires performance, area, energy

Design space exploration for "secure" DNN accelerators

SecureLoop

A tool for **design space exploration of secure DNN accelerators** equipped with cryptographic engines

Support confidentiality with cryptographic encryption

• Accelerator scheduling has to be coordinated with cryptographic operations

What if Tile != Authentication Block

Tile-as-an-AuthBlock is not optimal

- Option 1: Tile-as-an-AuthBlock based on the output tiling (...)
- Option 2: Rehash between layers .

Summary of our technique

Analytical approach to identify the optimal AuthBlock assignment

Cross-layer fine tuning from the loopnest schedule

Search space of AuthBlocks is complex

- Find the AuthBlock assignment that minimizes the additional off-chip traffic
- Both size and orientation of AuthBlocks matter

Search space of AuthBlocks is complex

- Find the AuthBlock assignment that minimizes the additional off-chip traffic
- Both size and orientation of AuthBlocks matter

Analytical approach to AuthBlock assignment

• Counting how many AuthBlocks intersect a tile

Please refer to the paper for details

Linear congruence problem

$$u \times k \equiv \min(w_i - w_j - u + 1, 0)$$

, ..., $w_i - 1 \mod w_i$

Cross-layer dependency from the loopnest level

Cross-layer dependency from the loopnest level

Heuristic approach to joint optimization

• Simulated annealing to find the approximate solution

SecureLoop: Scheduling Search Engine

SecureLoop: Scheduling Search Engine

Comparing scheduling algorithms

shallow,

Setup

- Same hardware
- Mostly conv workloads
- Different scheduling algo.

deeper, \uparrow opportunity

Summary: ~33% faster, ~50% better in EDP compared to the "tile-as-an-AuthBlock"

Different CryptEngine architectures and numbers

Similar area overhead, but with different performance

Increasing the PE array size cannot provide speedup when the CryptEngine throughput is low

Reducing SRAM size doesn't hurt performance if the CryptEngine throughput is sufficient

For the similar area, dedicate more area to the CryptEngine and the PE array, while sacrificing the GLB

Summary

• Scheduling algorithm considering cryptographic operations

Analytical approach to identify the optimal AuthBlock assignment

Cross-layer fine tuning from the loopnest schedule

- Design space exploration for secure accelerators