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Revisit: SmoothQuant (W8A8)
Accurate and efficient quantization of various LLMs

2
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models [Xiao et al., 2022]
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• SmoothQuant well maintains the accuracy without fine-tuning.


• SmoothQuant can both accelerate inference and halve the memory footprint.
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W4A16 for Single Query Serving
W8A8 cannot address low computational intensity of decoding
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• A100 GPU

• LLaMA-65B decoding

• W8A8 quantization is good for batch serving (e.g., batch size 128)

• But single-query LLM inference (e.g., local) is still highly memory-bounded

• We need low-bit weight-only quantization (e.g., W4A16) for this setting
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AWQ for Low-bit Weight-only Quantization
Targeting group-wise W3/W4 quantization

4
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- Weight-only quantization reduces the memory requirement, and accelerates token generation by 
alleviating the memory bottleneck.


- Group-wise/block-wise quantization (e.g., 64/128/256) offers a better accuracy-model size trade-off.


- But there is still a performance gap with round-to-nearest (RTN) quantization (INT3-g128) 
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AWQ for Low-bit Weight-only Quantization
Observation: Weights are not equally important; 1% salient weights

5
Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can 
greatly improve perplexity


- But how do we select salient channels? Should we select based on weight magnitude?
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AWQ for Low-bit Weight-only Quantization
Salient weights are determined by activation distribution, not weight
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can 
greatly improve perplexity


- But how do we select salient channels? Should we select based on weight magnitude?


- No! We should look for activation distribution, but not weight!
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AWQ for Low-bit Weight-only Quantization
Salient weights are determined by activation distribution, not weight
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- Pro: improve quantized performance with a negligible overhead (only 1%)


- Con: bad hardware efficiency due to mixed-precision weights


- A recently work SpQR only manages to get 15% speed-up
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AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed prec.)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- Multiplying the salient channels with  reduces its quantization error


- Why?

s > 1
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AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed precision)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- Consider a linear layer channel  (from ). We care about the quantization error from 


- 


- The scaled version is 


- We find that the error from Round() is always ~0.25 (average from 0-0.5)


- The maximum value in a group “usually” does not change if we just scale up a channel ->  not changed


- With , the error is scaled down. 

y = wx Wx Q(w)x
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AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed prec.)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)
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- Multiplying the salient channels with  reduces its quantization error


- Take a data-driven approach with a fast grid search

s > 1
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AWQ for Low-bit Weight-only Quantization
Better PPL under low-bit weight-only quantization
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai
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AWQ for Low-bit Weight-only Quantization
Also works for multi-modal LLMs (OpenFlamingo-9B, captioning)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai
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AWQ for Low-bit Weight-only Quantization
Also works for multi-modal LLMs (LLaVA, visual reasoning)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)
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AWQ for Low-bit Weight-only Quantization
Also works for multi-modal LLMs (LLaVA, visual reasoning)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai


Results
Quantization of instruction-tuned models
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- Comparing quantized Vicuna with FP16 counterparts


- W4 almost preserves performance



Results
Quantization for complex generations (code & math)

16

- MBPP: a Python coding dataset


- GSM-8K: a math reasoning dataset (requires multi-step reasoning)


- AWQ preserves the accuracy under W4-g128 quantization
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Industry & Community Impact

FasterTransformer

TRT-LLM
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https://github.com/NVIDIA/
FasterTransformer/blob/main/docs/
gpt_guide.md


https://github.com/NVIDIA/
TensorRT-LLM#key-features

Neural Compressor

Q8-Chat

https://github.com/intel/neural-
compressor/blob/master/docs/
source/smooth_quant.md

https://github.com/vllm-project/
vllm/blob/main/vllm/
model_executor/quantization_utils/
awq.py

lm-sys/FastChat https://github.com/lm-sys/
FastChat/blob/main/docs/awq.md

text-
generation-
inference

https://github.com/huggingface/
text-generation-inference/tree/
main/server/
text_generation_server/utils/awq/
quantize

lmdeploy
https://github.com/InternLM/
lmdeploy/blob/main/lmdeploy/lite/
quantization/awq.py

oobabooga/ 
text-
generation-
webui

https://github.com/oobabooga/text-
generation-webui/blob/main/
modules/models.py

https://github.com/replicate/vllm-
with-loras/blob/main/vllm/
model_executor/quantization_utils/
awq.py

SmoothQuant and AWQ are widely used:

https://efficientml.ai
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/NVIDIA/TensorRT-LLM#key-features
https://github.com/NVIDIA/TensorRT-LLM#key-features


TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency (AWQ only for Linears)

• HuggingFace: easy to use, but slow 

• FasterTransformer: high efficiency, but harder to use

18
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TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency

• HuggingFace: easy to use, but slow 

• FasterTransformer: high efficiency, but harder to use


• TinyChat goals: efficient, lightweight, Python-native (composable with other stacks like vLLM)
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TinyChat: A Lightweight Serving Infra
Analyze the latency overhead under FP16

• Measurement based on LLaMA-7B on RTX4090

20

Technique Tok/sec Ratio

Huggingface impl. 49.0 76%

FasterTransformer impl. 64.1 100%



TinyChat: A Lightweight Serving Infra
Analyze the latency overhead under FP16

• Measurement based on LLaMA-7B on RTX4090

• Some overheads can be easily removed! 95% of FT performance in Python

21

Technique Tok/sec Ratio

Huggingface impl. 49.0 76%

Preallocate KV cache 54.1 84%

FT LayerNorm kernel 57.5 90%

FlashAttention 57.5 90%

Merge QKV projections 59.2 92%

Fuse rotary embedding 61.0 95%

FasterTransformer impl. 64.1 100%



TinyChat: A Lightweight Serving Infra
State-of-the-art W4 inference speed

• Now we plugin the AWQ to quantize the weights into 4-bit (further 3x improvement)

• We can outperform the state-of-the-art MLC-LLM (TVM compilation-based) with our Pythonic 

solution

• 50% faster on AGX Orin

22

LLaMA-7B RTX 4090 Tok/sec AGX Orin Tok/sec

llama.cpp 141 22.5

Exllama 153 15.9

MLC-LLM 191 -

TinyChat 195 30.2



TinyChat: A Lightweight Serving Infra
Supporting a wide range of models on NVIDIA Jetson Orin
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• TinyChat achieves up to 1.5x faster runtime for Meta’s Llama models compared with systems specialized 
for this model.


• Compared with the only competitor that can support a diverse range of models, TinyChat is up to 7x faster.

• Remarkably, TinyChat’s front end is fully PyTorch-based. 



TinyChat: A Lightweight Serving Infra
Demo on AGX Orin (edge LLM inference)

24

• Orin Nano has 200GB/s memory bandwidth; even more memory-bounded

• Model size: 7B. ~30 token/s generation
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• A LightWeight Chatbot for LLMs on the edge

25https://github.com/mit-han-lab/llm-awq

- Deploying LLM on the edge is useful: running copilot services 
(code completion, office, game chat) locally on laptops, cars, 
robots, and more. These devices are resource-constrained, 
low-power and sometimes do not have access to the 
Internet.

- Data privacy is important. Users do not want to share personal 
data with large companies.

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq
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- TinyChatEngine implements the compressed AWQ 4bit model, built from C/C++ from scratch, easy to install 
and migrate to edge platforms

- Enables on-device LLM

26https://github.com/mit-han-lab/llm-awq

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq
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TinyChat brings about 3.3x speedup to LLaMA-2 on 4090

27

LLaMA-2-7B (FP16): 50 tokens / s LLaMA-2-7B (W4A16, AWQ): 166 tokens / s

https://github.com/mit-han-lab/llm-awq

Baseline: fp16 weight, fp16 activation AWQ: int4 weight, fp16 activation

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq
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TinyChat flexibly supports different LLM architectures

28

MPT-7B: 31 tokens / s Falcon-7B: 22 tokens / s Vicuna-7B: 33 tokens / s 
https://github.com/mit-han-lab/llm-awq

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq
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TinyChat delivers 30 tokens / second performance for LLaMA2
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LLaMA-2-7B (W4A16, AWQ): 30 tokens / s
https://github.com/mit-han-lab/llm-awq

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq


Thanks for Listening!
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