
Ji Lin

AWQ and TinyChat:

Efficient LLMs on the Edge

jilin@mit.edu 
https://linji.me

Haotian Tang
kentang@mit.edu

http://kentang.net

mailto:jilin@mit.edu
http://linji.me

Revisit: SmoothQuant (W8A8)
Accurate and efficient quantization of various LLMs

2
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models [Xiao et al., 2022]

2

• SmoothQuant well maintains the accuracy without fine-tuning.

• SmoothQuant can both accelerate inference and halve the memory footprint.

0

225

450

675

900

128 256 512 1024

720

366

194
122

848

432

228

139

FP16 (8 GPUs) SmoothQuant (4 GPUs)

0

100

200

300

400

128 256 512 1024

200189184182

389378372369

OPT-175B

M
em

or
y

(G
B

)

La
te

nc
y

(m
s)

Ac
cu

ra
cy

30%

39%

48%

57%

66%

75%

Model Size

1.3B 2.7B 6.7B 13B 30B 66B 175B

FP16
W8A8
SmoothQuant

Maintain
accuracy

W4A16 for Single Query Serving
W8A8 cannot address low computational intensity of decoding

3

TFLOPS

312

Compute intensity
0

bs=128

bs=1

• A100 GPU

• LLaMA-65B decoding

• W8A8 quantization is good for batch serving (e.g., batch size 128)

• But single-query LLM inference (e.g., local) is still highly memory-bounded

• We need low-bit weight-only quantization (e.g., W4A16) for this setting

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Targeting group-wise W3/W4 quantization

4
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- Weight-only quantization reduces the memory requirement, and accelerates token generation by
alleviating the memory bottleneck.

- Group-wise/block-wise quantization (e.g., 64/128/256) offers a better accuracy-model size trade-off.

- But there is still a performance gap with round-to-nearest (RTN) quantization (INT3-g128)

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

+1 +0 −2 −3

−3 −4 +2 +1

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

RTN

WFP16 Q(W)INT3

0

10

20

30

40

50

FP16 RTN act weight random

OPT-6.7B Wiki-2 PPL↓

degrade

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Observation: Weights are not equally important; 1% salient weights

5
Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can
greatly improve perplexity

- But how do we select salient channels? Should we select based on weight magnitude?

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

RTN

WFP16 Q(W)MixPrec

+1 +0 −2 −3

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4 FP16

channel

0

10

20

30

40

50

FP16 RTN act weight random

OPT-6.7B Wiki-2 PPL↓

1% FP16

degrade 1% FP16

helps

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Salient weights are determined by activation distribution, not weight

6
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can
greatly improve perplexity

- But how do we select salient channels? Should we select based on weight magnitude?

- No! We should look for activation distribution, but not weight!

Q(W)MixPrec

+1 +0 −2 −3

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4 FP16

channel

0

10

20

30

40

50

FP16 RTN activation weight random

OPT-6.7B Wiki-2 PPL↓

1% FP16 based on

✅

❌ ❌

X

determine the salient
weights by activation

big

improve

small improve

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Salient weights are determined by activation distribution, not weight

7

- Pro: improve quantized performance with a negligible overhead (only 1%)

- Con: bad hardware efficiency due to mixed-precision weights

- A recently work SpQR only manages to get 15% speed-up

Q(W)MixPrec

+1 +0 −2 −3

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4 FP16

channel

0

10

20

30

40

50

FP16 RTN activation weight random

OPT-6.7B Wiki-2 PPL↓

1% FP16 based on

✅

❌ ❌

X

determine the salient
weights by activation

big

improve

small improve

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed prec.)

8
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- Multiplying the salient channels with reduces its quantization error

- Why?

s > 1

0

10

20

30

40

50

FP16 RTN 1.5x 2x 4x

14.4214.0714.49

43.16

12.29

OPT-6.7B Wiki-2 PPL↓

multiply salient channels by

protects
salient

destroy

non-salient

W

Q()

 1×
 2×
 1×
 1×
 1×
 1×
 1×
 1× fuse to previous op

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed precision)

9
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

- Consider a linear layer channel (from). We care about the quantization error from

-

- The scaled version is

- We find that the error from Round() is always ~0.25 (average from 0-0.5)

- The maximum value in a group “usually” does not change if we just scale up a channel -> not changed

- With , the error is scaled down.

y = wx Wx Q(w)x

Q(w) = Δ ⋅ Round(w/Δ), Δ =
max(|w |)

2N−1

Q(w ⋅ s)(x/s) = Δ ⋅ Round(sw/Δ) ⋅ x ⋅
1
s

Δ

s > 1

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed prec.)

10
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

W

Q()

 1×
 2×
 1×
 1×
 1×
 1×
 1×
 1× fuse to previous op

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

- Multiplying the salient channels with reduces its quantization error

- Take a data-driven approach with a fast grid search

s > 1

12

13

14

15

1.5x 2x 4x search

13.18

14.42
14.07

14.49

OPT-6.7B Wiki-2 PPL↓

multiply salient channels by

Activation-awareness is important,
but not weight-awareness

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Better PPL under low-bit weight-only quantization

11
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Also works for multi-modal LLMs (OpenFlamingo-9B, captioning)

12
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Also works for multi-modal LLMs (LLaVA, visual reasoning)

13
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

AWQ for Low-bit Weight-only Quantization
Also works for multi-modal LLMs (LLaVA, visual reasoning)

14
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration (Lin et al., 2023)

https://efficientml.ai

Results
Quantization of instruction-tuned models

15

- Comparing quantized Vicuna with FP16 counterparts

- W4 almost preserves performance

Results
Quantization for complex generations (code & math)

16

- MBPP: a Python coding dataset

- GSM-8K: a math reasoning dataset (requires multi-step reasoning)

- AWQ preserves the accuracy under W4-g128 quantization

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Industry & Community Impact

FasterTransformer

TRT-LLM

17

https://github.com/NVIDIA/
FasterTransformer/blob/main/docs/
gpt_guide.md

https://github.com/NVIDIA/
TensorRT-LLM#key-features

Neural Compressor

Q8-Chat

https://github.com/intel/neural-
compressor/blob/master/docs/
source/smooth_quant.md

https://github.com/vllm-project/
vllm/blob/main/vllm/
model_executor/quantization_utils/
awq.py

lm-sys/FastChat https://github.com/lm-sys/
FastChat/blob/main/docs/awq.md

text-
generation-
inference

https://github.com/huggingface/
text-generation-inference/tree/
main/server/
text_generation_server/utils/awq/
quantize

lmdeploy
https://github.com/InternLM/
lmdeploy/blob/main/lmdeploy/lite/
quantization/awq.py

oobabooga/ 
text-
generation-
webui

https://github.com/oobabooga/text-
generation-webui/blob/main/
modules/models.py

https://github.com/replicate/vllm-
with-loras/blob/main/vllm/
model_executor/quantization_utils/
awq.py

SmoothQuant and AWQ are widely used:

https://efficientml.ai
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/NVIDIA/TensorRT-LLM#key-features
https://github.com/NVIDIA/TensorRT-LLM#key-features

TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency (AWQ only for Linears)

• HuggingFace: easy to use, but slow

• FasterTransformer: high efficiency, but harder to use

18

Efficiency

Ease of use

FasterTransformer

HuggingFace

TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency

• HuggingFace: easy to use, but slow

• FasterTransformer: high efficiency, but harder to use

• TinyChat goals: efficient, lightweight, Python-native (composable with other stacks like vLLM)

19

Efficiency

Ease of use

FasterTransformer

HuggingFace

TinyChat

TinyChat: A Lightweight Serving Infra
Analyze the latency overhead under FP16

• Measurement based on LLaMA-7B on RTX4090

20

Technique Tok/sec Ratio

Huggingface impl. 49.0 76%

FasterTransformer impl. 64.1 100%

TinyChat: A Lightweight Serving Infra
Analyze the latency overhead under FP16

• Measurement based on LLaMA-7B on RTX4090

• Some overheads can be easily removed! 95% of FT performance in Python

21

Technique Tok/sec Ratio

Huggingface impl. 49.0 76%

Preallocate KV cache 54.1 84%

FT LayerNorm kernel 57.5 90%

FlashAttention 57.5 90%

Merge QKV projections 59.2 92%

Fuse rotary embedding 61.0 95%

FasterTransformer impl. 64.1 100%

TinyChat: A Lightweight Serving Infra
State-of-the-art W4 inference speed

• Now we plugin the AWQ to quantize the weights into 4-bit (further 3x improvement)

• We can outperform the state-of-the-art MLC-LLM (TVM compilation-based) with our Pythonic

solution

• 50% faster on AGX Orin

22

LLaMA-7B RTX 4090 Tok/sec AGX Orin Tok/sec

llama.cpp 141 22.5

Exllama 153 15.9

MLC-LLM 191 -

TinyChat 195 30.2

TinyChat: A Lightweight Serving Infra
Supporting a wide range of models on NVIDIA Jetson Orin

23

To
ke

ns
 /

se
c

Latency comparison on Jetson Orin (64G) mobile GPU

0
7

14
21
28
35 33.0

15.9
22.5

13.4

AutoGPTQ llama.cpp exllama TinyChat

Llama-2

(7B)

Llama-2

(13B)

0
4
8

12
16
20 18.0

9.1

13.3

8.0

LLaMA

(30B)

0

2

4

6

8 7.3

3.2

5.8

2.9

Llama-2

(70B)

0

1

2

3

4 3.5

1.4

3.0

1.3

0
3
6
9

12
15 15

6

StarCoder

(15.5B)

0
7

14
21
28
35 32

14

Mistral

(7B)

StableCode

(3B)

0
6

12
18
24
30 30

10

0
5

10
15
20
25 22

3

Falcon

(7B)

• TinyChat achieves up to 1.5x faster runtime for Meta’s Llama models compared with systems specialized
for this model.

• Compared with the only competitor that can support a diverse range of models, TinyChat is up to 7x faster.

• Remarkably, TinyChat’s front end is fully PyTorch-based.

TinyChat: A Lightweight Serving Infra
Demo on AGX Orin (edge LLM inference)

24

• Orin Nano has 200GB/s memory bandwidth; even more memory-bounded

• Model size: 7B. ~30 token/s generation

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

• A LightWeight Chatbot for LLMs on the edge

25https://github.com/mit-han-lab/llm-awq

- Deploying LLM on the edge is useful: running copilot services
(code completion, office, game chat) locally on laptops, cars,
robots, and more. These devices are resource-constrained,
low-power and sometimes do not have access to the
Internet.

- Data privacy is important. Users do not want to share personal
data with large companies.

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

- TinyChatEngine implements the compressed AWQ 4bit model, built from C/C++ from scratch, easy to install
and migrate to edge platforms

- Enables on-device LLM

26https://github.com/mit-han-lab/llm-awq

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

TinyChat brings about 3.3x speedup to LLaMA-2 on 4090

27

LLaMA-2-7B (FP16): 50 tokens / s LLaMA-2-7B (W4A16, AWQ): 166 tokens / s

https://github.com/mit-han-lab/llm-awq

Baseline: fp16 weight, fp16 activation AWQ: int4 weight, fp16 activation

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

TinyChat flexibly supports different LLM architectures

28

MPT-7B: 31 tokens / s Falcon-7B: 22 tokens / s Vicuna-7B: 33 tokens / s
https://github.com/mit-han-lab/llm-awq

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

TinyChat delivers 30 tokens / second performance for LLaMA2

29

LLaMA-2-7B (W4A16, AWQ): 30 tokens / s
https://github.com/mit-han-lab/llm-awq

https://efficientml.ai
https://github.com/mit-han-lab/llm-awq

Thanks for Listening!

30

