
Song Han

Model Compression for  
Efficient AI Computing

MIT
songhan.mit.edu
tinyml.mit.edu

@SongHan_MIT

Hardware, AI, and Neural-nets

open source, co-design

http://github.com/mit-han-lab

From TinyML to LargeLM

Generated by Midjourney

…

… …

…

http://songhan.mit.edu
http://tinyml.mit.edu
http://github.com/mit-han-lab/

Song Han: Slide Title https://efficientml.ai

Model Compression
Bridges the Gap between the Supply and Demand of Computation

2

0.01

0.1

1

10

100

1000

2017 2018 2020 2021 2022

Model Size GPU Memory

GPT

0.11B

MegatronLM

8.3B

GPT-2

1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

 B
ill

io
n)

BERT

0.34B

Transformer

0.05B

GPT-3

175B

MT-NLG

530B

T-NLG

17B

TPUv2

16GB

V100

32GB

TPUv3

32GB

A100

40GB

A100

80GB

Specialized hardware  
is important but not
enough.

Model compression  
bridges the gap.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai 3

AI Application
(demand of computation)

AI Hardware 
(supply of computation)

Hardware-aware
NASNew Primitive

Fine-Grained
Pruning

CoarseGrained /
Structured Pruning

Post-Training

Quantization

Quantization-Aware

Training

Distillation

Augmentation

Model Compression
Bridges the Gap between the Supply and Demand of Computation

https://efficientml.ai

4

TinyMLGenerative
AI

Large
Language
Model

Advanced  
Driver
Assistance
System

Hardware-aware
NAS

Distillation
 New Primitive
Quantization
Pruning &
Sparsity

Model Compression
Applications

Techniques

Same Principle, Diverse Applications

5

TinyMLGenerative
AI

Large
Language
Model

Advanced  
Driver
Assistance
System

Hardware-aware
NAS

Distillation
 New Primitive
Quantization
Pruning &
Sparsity

Applications

Techniques

Song Han: Slide Title https://efficientml.ai

Efficient Large Language Models

6

The LLM serving costs are extremely high

Reducing LLM Serving Cost and Accelerating Inference

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Quantization cut the model size by half, but…
Existing Quantization Method is Slow or Inaccurate

7
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

Ac
cu

ra
cy

30%

39%

48%

57%

66%

75%

Model Size
1.3B 2.7B 6.7B 13B 30B 66B 175B

FP16
W8A8

Performance
degradation

- W8A8 quantization has been an industrial standard for CNNs, but not LLM. Why?

- Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN
quantization methods will destroy the accuracy.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

8
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

Activation

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize

Original

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

9
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

Activation

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize

Original

*0.1 *10

Y = XW

*0.1

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

10
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize

Activation Weight

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize
Activation

Easy to quantize Harder but still easy to quantize

Migrate the quantization
difficulty

Original Smoothed

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
SmoothQuant is Accurate and Efficient

11
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

• SmoothQuant well maintains the accuracy without finetuning.

• SmoothQuant can both accelerate inference and halve the memory footprint.

0

225

450

675

900

128 256 512 1024

720

366

194

122

848

432

228

139

FP16 (8 GPUs) SmoothQuant (4 GPUs)

0

100

200

300

400

128 256 512 1024

200189184182

389378372369

OPT-175B

M
em

or
y

(G
B

)

La
te

nc
y

(m
s)

Ac
cu

ra
cy

30%

39%

48%

57%

66%

75%

Model Size

1.3B 2.7B 6.7B 13B 30B 66B 175B

FP16
W8A8
SmoothQuant

Maintain
accuracy

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
SmoothQuant is Accurate and Efficient

12
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

• SmoothQuant well maintains the accuracy without finetuning.

• SmoothQuant can both accelerate inference and halve the memory footprint.

0

225

450

675

900

128 256 512 1024

720

366

194
122

848

432

228
139

FP16 (8 GPUs) SmoothQuant (4 GPUs)

0

100

200

300

400

128 256 512 1024

200189184182

389378372369

OPT-175B

M
em

or
y

(G
B

)

La
te

nc
y

(m
s)

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Advancing new efficient open model LLaMA

- LLaMA (and its successors like Alpaca) are popular  
open-source LLMs, which introduced SwishGLU, making activation quantization even harder

- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

13
W8A8 per token

PIQA↑ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 78.24% 79.05% 80.96% 81.72%

SmoothQuant 78.24% 78.84% 80.74% 81.50%

Wikitext↓ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 11.51 10.05 7.53 6.17

SmoothQuant 11.69 10.31 7.71 6.68

SmoothQuant

int8
fp16

https://efficientml.ai

Same Principle, Diverse Applications

14

TinyMLGenerative
AI

Large
Language
Model

Advanced  
Driver
Assistance
System

Hardware-aware
NAS

Distillation
 New Primitive
Quantization
Pruning &
Sparsity

Applications

Techniques

Song Han: Slide Title https://efficientml.ai

Background: The Era of AIoT on Microcontrollers

15

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

32GB 4GB

256GB

320kB

1MB~TB/PB

- Problem: restricted memory size

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

MCUNet
Deploy AI on MCUs that has only 256KB SRAM

16
The camera is OpenMV Cam.

Face/mask detection Person detection

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Inference Is Good. Can We Learn on Edge?
AI systems need to continually adapt to new data collected from the sensors
Not only inference, but also training

17
The camera is OpenMV Cam.

●On-device learning: better privacy, lower cost, customization, life-long learning

●Training is more expensive than inference, hard to fit edge hardware (limited memory)

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Sparse Training

18
On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

- Detailed Update Scheme for MobileNetV2
- The activation cost is high for the early

layers;

- The weight cost is high for the later layers;

- The overall memory cost is low for the

middle layers.

- Bias-only update

- Update weights for the middle layers

Only update important layers and sub-tensors to save memory

-10%

-5%

0%

5%

10%

0 10 20 30 40 50 60 70
-4%

5%

14%

0 5 10 15 20 25 30 35 40

- Later layers are more important

- The first point-wise conv in each block contributes more

- Middle layers are more important

- Attention and first FFN layers contribute more.

- Sensitivity analysis

Layer Index

Δ
Ac

cu
ra

cy CNN model (MobileNetV2)

Layer Index

Transformers (BERT)

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Low-Precision Training
with Quantization Aware Scaling (QAS)

19
On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

Va
l L

os
s

1

2

3

4

5

6

0 10 20 30 40 50

w/o QAS
w/ QAS

QAS improves the val
performance.

- Optimizing an INT8 quantized graph leads to memory
and computing savings
- All weights and activations are in INT8
- Different from quantization-aware training (QAT),

where operations are performed in FP16

- … But at the cost of worse convergence

- We found the issue lie lies in gradient scale mismatch

W
/g

-5

5

15

25

35

fp32 int8 int8+QAS

QAS aligns the W/G ratio

- Solution: quantization-aware scaling (QAS)

86.9
84.5

64.8

75.4

86.0

Improve
convergence

Extra
memory (3x)

To
p-

1
A

cc
ur

ac
y

(%
)

FP32
SGD

INT8
SGD

INT8
LARS

INT8
Adam

INT8 QAS

(ours)

worse
convergence

Thus, re-scale the gradients

W = sW ⋅ (W/sW)
quantize

≈ sW ⋅ WQ, GWQ
≈ sW ⋅ GW

[-128, 127][-2, 3]

∥WQ∥/∥GWQ
∥ ≈ ∥W/sW∥/∥sw ⋅ GW∥ = s−2

W ⋅ ∥W∥/∥G∥
weight and gradient ratios are off by s−2

W

Thus, we need to re-scale the gradients G′￼WQ
= GWQ

⋅ s−2
W

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Tiny Training Engine
Translate the theoretical savings into measured savings. 10x faster and smaller!

Device: Jetson Nano; Backend:Tiny Training Engine; Task: Speech Recognition

TTE On-Device Learning of Wave2Vec

La
te

nc
y

(m
s)

1

100

10,000

bs=1 bs=4

930
248

1,843
547

9,150
2,337

PyTorch TTE (Dense) TTE (Sparse)

M
em

or
y

(M
B)

1

100

10,000

bs=1 bs=4

345194

2,743
843

2,971 O
O

M

https://efficientml.ai

Model Compression for Diverse Applications

21

TinyMLGenerative
AI

Large
Language
Model

Driver
Assistance
System

Video Recognition
Gesture Recognition

Predictive Maintenance

Health Monitoring

Art Generation

Music Composition
Storytelling

Video Synthesis Chatbots

Fashion Design Machine Translation

Question Answering
Search Engine Revolution

Sentiment Analysis
Autonomous Driving

Augmented Reality

Blind Spot Detection
Adaptive Cruise Control

Application
(demand of computation)

Hardware
(supply of computation)

22

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware, AI and Neural-nets

TinyML and Efficient AI

Media:

songhan.mit.edu  
tinyml.mit.edu

youtube.com/c/MITHANLab
github.com/mit-han-lab

Sponsors:

https://songhan.mit.edu
http://hanlab.mit.edu
http://youtube.com/c/MITHANLab
https://github.com/mit-han-lab

