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Model Compression
Bridges the Gap between the Supply and Demand of Computation
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Specialized hardware  
is important but not 
enough. 

Model compression  
bridges the gap.

https://efficientml.ai
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Model Compression
Bridges the Gap between the Supply and Demand of Computation
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Same Principle, Diverse Applications

5

TinyMLGenerative 
AI

Large 
Language 
Model

Advanced  
Driver 
Assistance 
System

Hardware-aware 
NAS 

Distillation New Primitive Quantization Pruning & 
Sparsity 

Applications

Techniques



Song Han: Slide Title https://efficientml.ai

Efficient Large Language Models
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The LLM serving costs are extremely high

Reducing LLM Serving Cost and Accelerating Inference

https://efficientml.ai
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Quantization cut the model size by half, but…
Existing Quantization Method is Slow or Inaccurate

7
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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- W8A8 quantization has been an industrial standard for CNNs, but not LLM. Why? 

- Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN 
quantization methods will destroy the accuracy. 

https://efficientml.ai
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SmoothQuant
Smoothing activation to reduce quantization error
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

- Weights are easy to quantize, but activation is hard due to outliers 

- Luckily, outliers persist in fixed channels 
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SmoothQuant
Smoothing activation to reduce quantization error
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

- Weights are easy to quantize, but activation is hard due to outliers 

- Luckily, outliers persist in fixed channels 
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SmoothQuant
Smoothing activation to reduce quantization error
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

- Weights are easy to quantize, but activation is hard due to outliers 

- Luckily, outliers persist in fixed channels 

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize
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SmoothQuant
SmoothQuant is Accurate and Efficient

11
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

• SmoothQuant well maintains the accuracy without finetuning. 

• SmoothQuant can both accelerate inference and halve the memory footprint.
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SmoothQuant
SmoothQuant is Accurate and Efficient
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

• SmoothQuant well maintains the accuracy without finetuning. 

• SmoothQuant can both accelerate inference and halve the memory footprint.
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SmoothQuant
Advancing new efficient open model LLaMA

- LLaMA (and its successors like Alpaca) are popular  
open-source LLMs, which introduced SwishGLU, making activation quantization even harder


- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

13
W8A8 per token

PIQA↑ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 78.24% 79.05% 80.96% 81.72%

SmoothQuant 78.24% 78.84% 80.74% 81.50%

Wikitext↓ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 11.51 10.05 7.53 6.17

SmoothQuant 11.69 10.31 7.71 6.68

SmoothQuant

int8
fp16

https://efficientml.ai


Same Principle, Diverse Applications
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Background: The Era of AIoT on Microcontrollers
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Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

32GB 4GB

256GB

320kB

1MB~TB/PB

- Problem: restricted memory size

https://efficientml.ai
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MCUNet
Deploy AI on MCUs that has only 256KB SRAM

16
The camera is OpenMV Cam.

Face/mask detection Person detection

https://efficientml.ai
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Inference Is Good. Can We Learn on Edge?
AI systems need to continually adapt to new data collected from the sensors 
Not only inference, but also training

17
The camera is OpenMV Cam.

●On-device learning: better privacy, lower cost, customization, life-long learning

●Training is more expensive than inference, hard to fit edge hardware (limited memory)

User Intelligent Edge Devices

New and Sensitive 
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

https://efficientml.ai
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Sparse Training
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On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

- Detailed Update Scheme for MobileNetV2 
- The activation cost is high for the early 

layers; 

- The weight cost is high for the later layers; 

- The overall memory cost is low for the 

middle layers.

- Bias-only update

- Update weights for the middle layers

Only update important layers and sub-tensors to save memory

-10%

-5%

0%

5%

10%

0 10 20 30 40 50 60 70
-4%

5%

14%

0 5 10 15 20 25 30 35 40

- Later layers are more important

- The first point-wise conv in each block contributes more

- Middle layers are more important 

- Attention and first FFN layers contribute more.

- Sensitivity analysis

Layer Index

Δ 
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cy CNN model (MobileNetV2)
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Transformers (BERT)
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Low-Precision Training
with Quantization Aware Scaling (QAS)
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On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 
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- Optimizing an INT8 quantized graph leads to memory 
and computing savings 
- All weights and activations are in INT8 
- Different from quantization-aware training (QAT), 

where operations are performed in FP16  

- … But at the cost of worse convergence 

- We found the issue lie lies in gradient scale mismatch
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- Solution: quantization-aware scaling (QAS)
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Thus, re-scale the gradients

W = sW ⋅ (W/sW)
quantize

≈ sW ⋅ WQ, GWQ
≈ sW ⋅ GW

[-128, 127][-2, 3]

∥WQ∥/∥GWQ
∥ ≈ ∥W/sW∥/∥sw ⋅ GW∥ = s−2

W ⋅ ∥W∥/∥G∥
weight and gradient ratios are off by s−2

W

Thus, we need to re-scale the gradients G′ WQ
= GWQ

⋅ s−2
W

https://efficientml.ai
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Tiny Training Engine
Translate the theoretical savings into measured savings. 10x faster and smaller!

Device: Jetson Nano; Backend:Tiny Training Engine; Task: Speech Recognition
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Model Compression for Diverse Applications
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Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han


Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra” 

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse, 
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s 
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is 
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO 
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks 
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse 
linear algebra. There are two basic operations to be accelerated: union (OR) and join 
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time 
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space 
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC, 
then integrate the HW primitive into TACO. Then, I want to co-design the machine 
learning models that are not only pruned to be sparse, but also with the optimal 
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine 
learning applications accelerated with such sparse primitives: machine translation, 
speech recognition, image classification, and Progressive GAN, which makes real-time 
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy 
efficient by saving the electric bill and total cost of ownership (TCO).


Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.


Project 2: “Optimal Number Representation for Efficient Training/Inference” 

“Number representation” is a fundamental problem for efficient machine learning. For 
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two 
extremes of quantization. The former has easy hw implementation but poor 
expressiveness. The latter has inefficient hw implementation (need register lookup 
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also 
inefficient, since training DNNs needs more dynamic range and exciting methods need 
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large 
design space, we are interested in learning to learn the optimal number representation 
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored 
by AI. I plan to use machine learning techniques to find the best number representation 
for machine learning. It’s a co-design of number representation together with model 
architecture, trading off hardware efficiency and model accuracy. I’d like to push the 
pareto frontier of such trade-off. 


Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.


HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)
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