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| Model Compression

Bridges the Gap between the Supply and Demand of Computation
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| Model Compression
Bridges the Gap between the Supply and Demand of Computation
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Model Compression

Applications

please briefly explain large language model
in one sentence.

A large language model is a type of artificial
intelligence that can process and generate

human-like language, based on vast

amounts of data it has been trained on.
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Same Principle, Diverse Applications
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Efficient Large Language Models

Reducing LLM Serving Cost and Accelerating Inference

{ tionasy hid _ _ o J )

ChatGPT is at Write a rap about the status of ChatGPT. The LLM serving costs are extremely high
capacity right now Yeah, yo, what's up ChatGPT fam N

A lot of people trying to jam
Get notified when we're back But don't worry, we got your back

Free Plan ChatGPT Plus USD $20/mo

Just check back soon, we'll get on track

Your Current Plan Upgrade plan

ChatGPT's the place to be

For all your Al chat needs () Available when demand is low Due to high demand, we've
We're working hard to keep up the pace temporarily paused upgrades.

) . _ @ Standard response speed
So hold tight, we'll be back in this space
@ Regular model updates Priority access to new features
So don't you worry, don't be mad
We're working hard, it's not so bad
Just give us time, we'll be back
ChatGPT, the future of chat, that's a fact.
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| Quantization cut the model size by half, but...

Existing Quantization Method is Slow or Inaccurate
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- WB8AS8 quantization has been an industrial standard for CNNs, but not LLM. Why?

- Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN
guantization methods will destroy the accuracy.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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| SmoothQuant

Smoothing activation to reduce quantization error
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- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)
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| SmoothQuant

Smoothing activation to reduce quantization error
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- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)
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| SmoothQuant

Smoothing activation to reduce quantization error

Original Smoothed

Migrate the quantization
difficulty
J
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- Weights are easy to quantize, but activation is hard due to outliers
- Luckily, outliers persist in fixed channels

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)
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| SmoothQuant

SmoothQuant is Accurate and Efficient
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900

75%
66 % 675
0 : ! —
27% ¥ Maintain 2
- S 450
48% dCCuracy Ec;
® FP16 5
39% WS8AS 275
+ SmoothQuant
30%
1.3B 2.7B 6.7B 13B 30B 668 175B

Model Size

228

194

| .
| .

FP16 (8 GPUs)

432

366

848

720

128

256

512

1024

e SmoothQuant well maintains the accuracy without finetuning.
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e SmoothQuant can both accelerate inference and halve the memory footprint.

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)
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| SmoothQuant

SmoothQuant is Accurate and Efficient

Method OPT-175B BLOOM-176B GLM-130B
FP16 71.6% 68.2% 73.8% . ..
WB8AS 32.3% 64.2% 26.9% [ S . || .
ZeroQuant 31.7% 67 .4% 26.7% FP16 (8 GPUs) B SmoothQuant (4 GPUs)
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e SmoothQuant can both accelerate inference and halve the memory footprint.

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)
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] SmoothQuant A

Advancing new efficient open model LLaMA mootiluant - S

>

dun int8 I

- LLaMA (and its successors like Alpaca) are popular fple -
open-source LLMs, which introduced SwishGLU, making activation quantization even harder

- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

PIQAT LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B
FP16 78.24% 79.05% 80.96% 81.72%
SmoothQuant 78.24% 78.84% 80.74% 81.50%
Wikitext! LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B
FP16 11.51 10.05 7.53 6.17
SmoothQuant 11.69 10.31 7.71 6.68

WB8AS per token
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| Same Principle, Diverse Applications

Applications
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| Background: The Era of AloT on Microcontrollers

Smart Retail Personalized Healthcare Smart Home Precision Agriculture

- Problem: restricted memory size

Cloud Al Mobile Al Tiny Al

Memory (Activation) 32GB 4GB 320kB

Storage (Weights) ~TB/PB 256GB 1MB
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Face/mask detection Person detection

The camera is OpenMV Cam.



https://efficientml.ai

| Inference Is Good. Can We Learn on Edge?

Al systems need to continually adapt to new data collected from the sensors

Not only inference, but also training

'l' llu

On-device Learning

New and Sensitive
Data

User

Cloud-based Learning

data cannot be sent to the
cloud for privacy reason

Intelligent Edge Devices Cloud Server

-On-device learning: better privacy, lower cost, customization, life-long learning

- Training Is more expensive than inference, hard to fit edge hardware (limited memory)

The camera is OpenMV Cam.
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Sparse Training

Only update important layers and sub-tensors to save memory

- Sensitivity analysis
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- Later layers are more important

MobileNetV?2

- The first point-wise conv in each block contributes more

10% 1
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Layer Index
- Middle layers are more important

- Attention and first FFN layers contribute more.

(a) per-layer memory usage

Detailed Update Scheme for MobileNetV2 75 : . — — . ——
- - : : 560 “*~.. .« high activation memory activation B weight high weight memory —...--
- The activation cost is high for the early 2, e
layers; g’ 0l L e low merilory cost e
’ -0 | s T e
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- The weight cost is high for the later layers; =, A = e N
- The overall memory cost is low for the , (b) sparse update scheme sparse layer update (} ( sparse tensor update
: 2 N N N
middle layers. §in e I T
| 1 b

- Bias-only update

- Update weights for the middle layers

not update bias/forward only «
6 8 10 12 14 16 18
Layer

-~ update bias
20 22 24 26 28
Index

On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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| Low-Precision Training
with Quantization Aware Scaling (QAS)

- Optimizing an INT8 quantized graph leads to memory - Solution: quantization-aware scaling (QAS)
and computing savings ['%‘?] (Wisw) quantize Hﬁ} 127] G G
. L . = Sy ° ) N Sy : X Sy
- All weights and activations are in INT8 W W w0 Wo ™ °W =W
- Different from quantization-aware training (QAT), weight and gradient ratios are off by S‘;/Z
where operations are performed in FP16 - —2
P P [Woll/IGw, Il = IWsyli/lls,, - Gl = sy - IWII/NGI
- ... But at the cost of worse convergence Thus, we need to re-scale the gradients Gy, = Gy, - S
- We found the issue lie lies in gradient scale mismatch . 6 .
Improve QAS improves the val
< |EX] convergenc 5 performance.
QAS aligns the W/G ratio < -
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— fp32 — int8 iNt8-+QAS SGD SGD LARS Adam (ours)
WOrSe ~. 4 Extra
convergence memory (3x)

On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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| Tiny Training Engine

Translate the theoretical savings into measured savings. 10x faster and smaller!

(27 NVIDIA.
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Device: Jetson Nano; Backend:Tiny Training Engine; Task: Speech Recognition
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| Model Compression for Diverse Applications

Video Synthesis Search Engine Revolution  Chatbots
Predictive Maintenance Art Generation Question Answering Augmented Reality
Gesture Recognition Storytelling Autonomous Driving
Video Recognition Music Com position  Sentiment Analysis Blind Spot Detection
Health Monitoring Fashion Design Machine Translation Adaptive Cruise Control

please briefly explain large language model
in one sentence.
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A large language model is a type of artificial
intelligence that can process and generate

human-like language, based on vast

amounts of data it has been trained on.

Driver
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Al

Hardware
(supply of computation)

Application
(demand of computation)
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