Power Electronics Challenges

All kinds of systems are limited by energy and how it is controlled and processed

Efficient Lighting (LED driver)

Computers (Power Supply)

Transportation (Inverter for Prius)

Renewable Energy (Microinverter)

Needs

- Miniaturization (smaller, lighter)
- Higher efficiency (converters and systems)
- Higher performance (better systems)

Mobile Devices (Power management)

Applications (create entirely new system opportunities)

Develop and apply technologies for improved power conversion

Passive Components Dominate

Passive components dominate size, weight and loss

- Both power stage and filters are important
- Magnetics especially challenging

Miniaturizing Magnetics is Difficult

Plii

Scaling laws work against miniaturization of power magnetics

- Simplified case: power handling (VA) of a fixed-frequency inductor
 - Flux density B₀ limited by core loss
 - Current density J_0 limited by winding loss

If we scale dimensions by factor ε

- Areas scale as ε²
- **Ο** Volumes scale as ε³
- **D** Power handling as ε^4 , *faster* than volume

Power density scales as ε

Gets worse at smaller size!

$$VA = V \cdot I \propto (NfB_0A_C) \cdot \left(\frac{J_0A_W}{N}\right) = f \cdot B_0 \cdot J_0 \cdot (A_CA_W)$$

Sullivan, et. al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," International Symposium on 3D Power Electronics Integration and Manufacturing, June 2016

Opportunities for Advances

Improvements in semiconductor devices, integrated circuits / controls, magnetic materials and packaging open the door to better power electronics

More sophisticated converter designs now possible

Increase complexity but greatly improve size, efficiency and performance

Much higher-frequency converters now possible

- □ (10-100x higher than conventional approaches)
- Substantial reductions in energy storage / passives
- Improved passive components and integration
 - Better materials, designs, integrated construction
 - □ Alternative energy storage mechanisms (e.g., piezoelectrics)
- New power electronics applications now possible
 - Advances enable new electronic functions

- Objective: develop technologies to enable miniaturized, integrated power electronics operating at HF (3 – 30 MHz) and above
 - To achieve miniaturization and integration:
 - Circuit architectures, topologies and controls for HF/VHF
 - Develop approaches that overcome loss and best leverage devices and components available for a target space
 - Devices
 - Optimization of integrated power devices, design of RF power IC converters, application of new devices (e.g., GaN)
 - Passives
 - Synthesis of integrated passive structures incorporating isolation and energy storage
 - Investigation and application of magnetic materials at HF & VHF
 - Integration
 - Integration of complete systems

HF Magnetics Example: Low-loss inductors

Leverage quasi-distributed gaps and field balancing for reduced conductor loss

quasi-distributeddouble-sided conductiongaps(balanced H fields)

Approach scalable to a wide range of applications

16.6 uH, 2 A, 3 MHz	5/9/10/48
performance	(litz)
Experimental Q	980
Simulated Q	1000

Twice the Q of conventional inductors with the same magnetic materials

(Yang, TPEL'21)

R. Yang et. al. "A Low-Loss Inductor Structure and Design Guidelines for High-Frequency Applications," *IEEE Transactions on Power Electronics*, 2019.

High-Power HF Self-Shielded Inductor

500 nH, 13.56 MHz Inductor @ 80 A_{ac} / 3400 V_{ac}

Outer core and Inner core

Winding

Endcaps

Inductor with Outer Shield

- Cored inductor for use in high-power rf applications (PAs, TMNs)
- Smaller, more efficient than coreless solenoids, and shielded!
- Prototype demonstrated with Q~850+ up to 80 A, 13.56 MHz

Inner core + outer core top view

Mansi Joisher, MIT 2023

High Efficiency RF Power Systems

- 11117
- Radio-frequency (RF) power amplifiers / inverters find use in a diverse range of applications
- A need is to better achieve (simultaneously)
 - Efficiency, Linearity, Bandwidth, Load Range
- We apply switched-mode techniques for efficient RF power conversion with linear control
 - Outphasing control for linear power amplification
 - Design of switched-mode RF inverters / power amplifiers
 - Target wide power and load impedance ranges at high efficiency

5 kW, 13.56 MHz Wide-Range Inverter

Switched-mode rf matching network (1.5 kW @ 13.56 MHz)

Piezoelectric Power Conversion

- Piezoelectric-based power converters: store energy mechanically rather than magnetically
 - Potential for very high power density, better scaling to small size
- Topologies, operating sequences, controls
- Investigation of materials and devices
- Packaging, integration and high-powerdensity designs

High-Performance Design Example

Achieves high performance with high power density

- □ Step-down dc/dc converter at ~ 500 kHz
- **D** PR power handling > 1 kW/cm³ at low ΔT

High-Performance Design Example

- □ Step-down dc/dc converter at ~ 500 kHz
- **D** PR power handling > 1 kW/cm³ at low ΔT

Applications

- Power electronics technology to benefit specific applications
 - Design, manufacturing, control
- Target major system-level improvements
 - Efficiency, performance, functionality
- Many application areas
 - Electrified transportation
 - Computation and communications
 - Renewables
 - RF systems

Hybrid magnetic switchedcapacitor converter for low-voltage power delivery

Multitrack HF PFC power supply, 50 W/in^3

13.56 MHz 1 kW High-Frequency Variable Load Inverter (HFVLI)