Research Overview

Hae-Seung Lee

Massachusetts Institute of Technology

Research Topics

- Continutous-time pipeline ADC (2nd Generation)
- Secure A/D converters (in collaboration with A. Chandrakasan)
- Analog In-Memory Computing
- Tissue perfusion pressure modeling and measurements (in collaboration with C. Sodini, and Dr. A. Aguirre, MGH)
- Tissue perfusion in glaucoma patients (new, in collaboration with C. Sodini, and T. Heldt)
- Electronic bacterial sensing(in collaboration with M. Shulaker)

Continuous-Time Pipeline (CTP) ADC with Reduced Clock Jitter Sensitivity

Rishabh Mittal, Anantha Chandrakasan, and Hae-Seung Lee (MIT)

Hajime Shibata, Sharvil Patil (ADI)

Gabriele Manganaro (MediaTek)

Time-Interleaved sub-ADC-DAC Path

Proposed Delay Line

- 4x-cascaded RC-lattice-based delay line: no inductors
- Good phase matching, suitable up to 1.6 GHz BW

Phase Response and Signal Leakage

In the above plots we assume that both 1x- and 4x-RC lattice delay lines have been optimized for 1.6 GHz BW operation (i.e., all R and C values are chosen such that signal leakage is minimized in-band)

Anti-Aliasing in CT Pipeline ADC

Anti-Aliasing
$$\approx \frac{H(f_S - f_{in})}{H(f_{in})}$$

Die Photo

- Technology : 16nm FinFET
- Area of ADC core: 0.77 mm²
- Digital recombination is performed off-chip

 \circ Estimated area* = 0.15 – 0.17 mm²

Estimated power* = 113 mW

* Digital recombination area and power estimates are based on [4].

Measured Spectrum

- F_{CLK} = 6.4 GHz
- Small-signal average NSD = -151.7 dBFS/Hz.
- Noise floor is 1st-order shaped due to backend VCO-ADC noise [4].

Measured SNR, SNDR and SFDR

F_{IN} = 993.75 MHz

Measured STF and Anti-Aliasing

Small amplitude interferer Anti-aliasing > 40 dB

Large amplitude interferer Anti-aliasing > 29 dB

[interferer near $F_{CLK} = 6.4 \text{ GHz}$]

Performance Comparison

	This work	ISSCC 2020	JSSC 2017	TCAS-I 2022	JSSC 2010	ISSCC 2017	JSSC 2016
Architecture	CT Pipeline Interleaved	CT Pipeline VCO-based	CT Pipeline Multistage	CT Pipeline w/ Decimation	CT Pipeline	DT Pipeline Interleaved	CT MASH ΔΣ
Technology	16 nm FinFET	16 nm FinFET	28 nm CMOS	65 nm CMOS	180 nm CMOS	28 nm CMOS	28 nm CMOS
f _s [MHz]	6400	6400	9000	800	26	10000	8000
OSR	3.2	4	4	4	2	1.5	8.6
BW [MHz]	1000	800	1125	100	6.5	3300	465
Peak SNR/SNDR [dB]	61.7	58	65.4	70.4 / 70	62.7 / 61.1	56 / 55	68
SFDR [dB]	68	73	73	-	67	71	83
HD2 [dB]	< -84.7	-93	-79	-79.7	-66	-77	-90
HD3 [dB]	< -80.3	-84	-86	< -77.2	-	-73	-86
DR [dB]	63.7	60	73	73	-	60	72
Inherent Anti- Aliasing	Yes	Yes	Yes	Yes	Yes	No	Yes
Power [mW]	240	280	2330	29	26.7	2900	350
Area [mm ²]	0.77	0.34	5.1	0.77	1.9	7.4	1.2
FoM _s = SNDR + 10log ₁₀ (BW/P) [dB]	157.9	152.5	152.2	165.4	145	147	155

Schrier Figure-of-Merit Comparison

EECS, MIT

Advantages of Continuous-Time ADCs

- Inherent anti-aliasing due to lack of lead sample-and-hold
 - Anti-alias filter may be unnecessary
 - Delay line amplitude and phase matching is critical for anti-aliasing large amplitude blockers
- The effect of clock jitter can be reduced by time-interleaving 1st stage sub-ADC/DAC
- Time-interleaving also improves the ADC bandwidth and anti-aliasing

2nd Gen Research topics

- Extend CTP to higher bandwidth
- High-frequency analog delay line for amplitude and phase matching and small area
 - Multiple-path RC cascades
 - On-chip transmission line
 - Wavelength reduction technique
- Further mitigation of DAC clock jitter by "shaping" DAC pulses
- Increase time-interleaving factor
- Incorporation of filtering function in the ADC