Applications of Blood Flow Measurement in Neurovascular Care

Syed M. Imaduddin, PhD
Institute for Medical Engineering and Science
Massachusetts Institute of Technology

May 3, 2023
The case for advances in neurovascular care
The case for advances in neurovascular care

- Nutrition
- Fluids
- Ventilator controls
- Medications (infusion pumps)
- Head-of-bed angle
Very few metrics of brain health and perfusion!
A wish list of neurovascular measurements

- Brain perfusion
 - Brain oxygen consumption/demand

- Mechanical stress monitoring
 - Non/less-invasive intracranial pressure (ICP)
 - Continuous intracranial compliance (ICC)

- Autoregulation assessment
 - Cerebrovascular flow resistance (CVR)

- Neuronal activity interpretation, …

- Cerebral volumetric blood flow (Liters/min)
- Arterial blood pressure
Agenda

• Model-based ICP, ICC, and CVR estimation framework
• Framework validation in an animal model
• Clinical translation via ultrasound-based blood flow measurement
• Conclusion
Agenda

• Model-based ICP, ICC, and CVR estimation framework

• Framework validation in an animal model

• Clinical translation via ultrasound-based blood flow measurement

• Conclusion
Cerebral blood flow (CBF) is driven by ABP – ICP not ABP – VBP.
Compartmental view of the cerebral space

Cerebrovascular resistance (CVR) = \(\frac{\text{ABP} - \text{ICP}}{\text{CBF}} \)

Intracranial compliance (ICC) = \(\frac{\Delta q}{\Delta p} \)

\(\Delta q \): Change in intracranial volume
\(\Delta p \): Change in ICP

ABP: Arterial blood pressure
ICP: Intracranial pressure
CBF: Cerebral blood flow

CVR and ICE measurements are rarely performed despite theoretical benefit
Model-based ICP, ICC, and CVR estimation

\(\dot{q}(t) \): Cerebral blood flow
\(p_a(t) \): Arterial blood pressure
\(p_i(t) \): Intracranial pressure
\(p_x \): DC operating point (after linearizing C2)

\(\overline{p}_i \): Mean intracranial pressure
\(\overline{p}_i(t) \): Intracranial pressure pulsatility
\(\overline{p}_a(t) \): Arterial blood pressure pulsatility

\[R \] Cerebrovascular flow resistance
\(C_1 \): Vascular and brain compliance
\(C_2 \): Incremental dural compliance
\(C_e \): Effective compliance

\[\dot{q}(t) \rightarrow p_a(t) \rightarrow R \rightarrow p_i(t) \]

\[C_1 \]

\[C_2 \]

\[p_x \]

\[\overline{p}_i = \gamma \overline{p}_a(t) \]

\[\gamma = \frac{C_1}{C_1 + C_2} \]

\[C_e = \frac{C_1 C_2}{C_1 + C_2} \]

Determine \(C_e \), \(R \), \(\overline{p}_i \), and \(\gamma \) using \(\dot{q}(t) \) and \(p_a(t) \)

\[C_1 = \frac{C_e}{1 - \gamma} \quad \text{and} \quad C_2 = \frac{C_e}{\gamma} \]

Agenda

• Model-based ICP, ICC, and CVR estimation framework

• Framework validation in an animal model

• Clinical translation via ultrasound-based blood flow measurement

• Conclusion
Validation in an animal model

• Rabbit model
 • Measure blood pressure and cerebral blood flow invasively
 • Raise ICP by inflatable balloon
 • Measure ICC by a second inflatable balloon
Validation in an animal model
Agenda

• Model-based ICP, ICC, and CVR estimation framework

• Framework validation in an animal model

• Clinical translation via ultrasound-based blood flow measurement

• Conclusion
Clinical translation: ICP

Using pulsed-Doppler ultrasound for *cerebral blood velocity*

Boston Children’s Hospital

![Graph showing mean ICP comparison between estimate and reference](image)

- Bias = 2.4 mmHg, RMSE = 4.3 mmHg

Beth Israel Deaconess

![Graph showing mean ICP comparison between estimate and reference](image)

- Bias = 1.6 mmHg, RMSE = 5.0 mmHg

Mean ICP

- IP: Intraparenchymal
- VD: Ventricular drain

Clinical translation: ICP + ICC & CVR

Requires cerebral *volumetric* blood flow

Useful for estimating spatial gradients in ICP/CVR/ICC

Spatial resolution severely limited as low-frequency, skull-penetrating necessary

- Middle cerebral artery (MCA)
- Basilar artery
- Vertebral artery (VA)
- Internal carotid artery (ICA)
- Common carotid artery (CCA)

Higher frequencies enable higher spatial resolution

Simpler measurement for spot assessment

S. M. Imaduddin et al., *IEEE Trans Ultrason*, 2022

S. M. Imaduddin et al., *Int ICP Conf*, 2022
Cerebral blood flow measurement

Use of Butterfly iQ/iQ+ for neuromonitoring is considered off-label use

CF generally used for qualitative imaging
Here, we determine blood flow waveforms

Raw data acquired with the Butterfly iQ
Model validation: Healthy volunteers

Upright position: ICP decreases in head-up position
Qvarlander et al., *J Appl Physiol*, 2013

Upright position: Cranial compliance expected to increase along with the total (spinal and cranial) compliance

CVR expected to decrease to sustain blood flow
Model validation: ICP estimates

- Qvarlander et al., 2013, $n = 27$
- Petersen et al., 2016, $n = 9$
Model validation: ICC estimates
Clinical deployment

• Pediatric patients at Boston Children’s Hospital

• Three patients studied so far, and recruitment is ongoing
Agenda

• Model-based ICP, ICC, and CVR estimation framework
• Framework validation in an animal model
• Clinical translation via ultrasound-based blood flow measurement
• Conclusion
A wish list of neurovascular measurements

Brain perfusion
- Brain oxygen consumption/demand

Mechanical stress monitoring
- Non/less-invasive intracranial pressure (ICP)
- Continuous intracranial compliance (ICC)

Autoregulation assessment
- Cerebrovascular flow resistance (CVR)

Neuronal activity interpretation, …

Cerebral *volumetric* blood flow (Liters/min)
- Arterial blood pressure
Ongoing work and Future directions

• Extension to ophthalmic applications

• Unobtrusive blood pressure waveform estimation

• Improved blood flow measurement
 • Volumetric imaging
 • Higher frame rates

• Continuous monitoring instead of spot-assessment
 • Reducing transducer size and weight
Acknowledgments

MIT
- Prof. Thomas Heldt
- Prof. Charles Sodini
- Prof. George Verghese
- Dr. Andrea Fanelli
- Dr. Rohan Jaishankar

MIT CRC
- Dr. Katherine Ricciardi
- Ms. Tatiana Urman

MIT DCM
- Dr. Alison Hayward
- Ms. Kylie Kelley

BCH
- Dr. Kerri LaRovere
- Dr. Matthew Luchette
- Dr. Virginie Plante

Butterfly
- Mr. Nevada Sanchez
- Dr. Kailiang Chen
- Dr. Abraham Neben

[Logos of MEDRC, Boston Children's Hospital, Analog Devices, and Butterfly]