

QuantumNAS: Efficient Quantum Machine Learning System with Noise-Aware Search

[HPCA'22] QuantumNAS: Noise-adaptive search for robust quantum circuits [DAC'22] QuantumNAT: Quantum Noise-Aware Training with Noise Injection, Quantization and Normalization [DAC'22] QOC: Quantum On-Chip Training with Parameter Shift and Gradient Pruning

2022/05/04 CICS

<u>qmlsys.mit.edu</u>

Hanrui Wang MIT HAN Lab

- Background
- QuantumNAS
- TorchQuantum Library
- Conclusion

- Noisy Intermediate-Scale Quantum (NISQ)
 - **Noisy**: qubits are sensitive to environment; quantum gates are unreliable
 - Limited number of qubits: tens to hundreds of qubits

Single-qubit Pau	ıli-X error 🗸 🗸	
Avg 1.718e-3		
min 1.470e-4	max 7.486e-2	
CNOT error	\checkmark	
Avg 6.973e-2		
min 5.403e-3	max 1.000e+0	

Gate Error Rate

https://quantum-computing.ibm.com/

Google Sycamore

https://www.nature.com/articles/s41586-019-1666-5

IBM Washington

https://quantum-computing.ibm.com/

Parameterized Quantum Circuits

- Parameterized Quantum Circuits (PQC)
- Quantum circuit with fixed gates and parameterized gates \bullet

- PQCs are commonly used in hybrid classical-quantum models and show promises to achieve quantum advantage
 - Variational Quantum Eigensolver (VQE)
 - Quantum Neural Networks (QNN)

Quantum Approximate Optimization Algorithm (QAOA) Torch <u>qmlsys.mit.edu</u> uantum

Challenges of PQC — Noise

- Noise degrades the Parameterized Quantum Circuit (PQC) reliability
- More parameters increase the noise-free accuracy but degrade the measured accuracy
- Under same #parameters, measured accuracy of different circuit architecture (ansatz) varies a lot
- Therefore, circuit architecture is critical

- Large design space for circuit architecture
 - Type of gates

Challenges of PQC — Large Design Space

- Large design space for circuit architecture
 - Type of gates

• Number of gates

Challenges of PQC — Large Design Space

- Large design space for circuit architecture
 - Type of gates

• Number of gates

Position of gates

Challenges of PQC — Large Design Space

Goal of QuantumNAS

Automatically & efficiently search for noise-robust quantum circuit

Train one "SuperCircuit", providing parameters to many "SubCircuits"

Solve the challenge of large design space

(1) Quantum noise feedback in the search loop (2) Co-search the circuit architecture and qubit mapping

Solve the challenge of large quantum noise

QuantumNAS: Decouple the Training and Search

Naive Search

For q devices: **For** search episodes: // meta controller **For** circuit training iterations: update parameters(); Expensive If good_circuit: break;

QuantumNAS: Decouple the Training and Search

Naive Search

For q devices: **For** search episodes: // meta controller **For** circuit training iterations: update parameters(); Expensive If good_circuit: break;

QuantumNAS

	For SuperCircuit training	iterations: Expensive	
	update_parameters();	training	
	decoup		
=>	For q_devices:	soarch	
	For search episodes:	Search	
	sample from SuperCi	<i>ircuit</i> ; Light-Weight	
	<pre>If good_circuit: break //no training</pre>	Κ;	

- SuperCircuit Construction and Training
- Noise-Adaptive Evolutionary Co-Search of SubCircuit and Qubit Mapping
- Train the Searched SubCircuit
- Iterative Quantum Gate Pruning

- SuperCircuit Construction and Training
- Train the Searched SubCircuit
- Iterative Quantum Gate Pruning

Noise-Adaptive Evolutionary Co-Search of SubCircuit and Qubit Mapping

SuperCircuit & SubCircuit

- Firstly construct a design space. For example layer and 4 CU3 gates in the second layer
 - Contains 2^8 = 256 candidates

• Firstly construct a design space. For example, a design space of maximum 4 U3 in the first

SuperCircuit & SubCircuit

- layer and 4 CU3 gates in the second layer
 - Contains 2^8 = 256 candidates
- SuperCircuit: the circuit with the largest number of gates in the design space
 - Example: SuperCircuit in U3+CU3 space

• Firstly construct a design space. For example, a design space of maximum 4 U3 in the first

SuperCircuit & SubCircuit

- layer and 4 CU3 gates in the second layer
 - Contains 2^8 = 256 candidates
- SuperCircuit: the circuit with the largest number of gates in the design space
 - Example: SuperCircuit in U3+CU3 space

• Firstly construct a design space. For example, a design space of maximum 4 U3 in the first

• Each candidate circuit in the design space (called SubCircuit) is a subset of the SuperCircuit

SuperCircuit Construction

- Why use a SuperCircuit?
 - them individually

• It enables efficient search of circuit architecture candidates with no need of training each of

• For one SubCircuit candidate, we can directly inherit parameters from SuperCircuit and consider that the SubCircuit can operate as if it is trained individually from scratch

SuperCircuit Construction

- Why use a SuperCircuit?
 - them individually
 - For one SubCircuit candidate, we can directly inherit parameters from SuperCircuit and consider that the SubCircuit can operate as if it is trained individually from scratch
- Need to prevent interference of SubCircuits from each other

• It enables efficient search of circuit architecture candidates with no need of training each of

SuperCircuit Training

- In one SuperCircuit Training step:
 - Sample a gate subset of SuperCircuit (a SubCircuit)
 - Front Sampling and Restricted Sampling
 - Only use the subset to perform the task and updates the parameters in the subset
 - Parameter updates are cumulative across steps

- \bullet
 - make SuperCircuit training more stable

Front Sampling

During sampling, we first sample total number of blocks, then sample gates within each block • Front sampling: Only the front several blocks and front several gates can be sampled to

Restricted Sampling

- Restricted Sampling:
 - Restrict the difference between SubCircuits of two consecutive steps
 - For example: restrict to at most 4 different layers

Restricted Sampling

- Restricted Sampling:
 - Restrict the difference between SubCircuits of two consecutive steps
 - For example: restrict to at most 4 different layers

Restricted Sampling

- **Restricted Sampling:** \bullet
 - Restrict the difference between SubCircuits of two consecutive steps lacksquare
 - For example: restrict to at most 4 different layers

In one SuperCircuit Training step: Sample and Train

• In one SuperCircuit Training step: Sample and Train

• In one SuperCircuit Training step: Sample and Train

How Reliable is the SuperCircuit?

Inherited parameters from SuperCircuit can provide accurate relative performance \bullet

SuperCircuit Construction and Training

- Train the Searched SubCircuit
- Iterative Quantum Gate Pruning

Noise-Adaptive Evolutionary Co-Search of SubCircuit and Qubit Mapping

Noise-Adaptive Evolutionary Co-Search

• Search the best SubCircuit and its qubit mapping on target device

Noise-Adaptive Evolutionary Co-Search

Noise-Adaptive Evolutionary Co-Search

Mutation and Crossover

• Mutation and crossover create new SubCircuit candidates⁺

- SuperCircuit Construction and Training
- Train the Searched SubCircuit
- Iterative Quantum Gate Pruning

Noise-Adaptive Evolutionary Co-Search of SubCircuit and Qubit Mapping

- SuperCircuit Construction and Training
- Train the Searched SubCircuit
- Iterative Quantum Gate Pruning

Noise-Adaptive Evolutionary Co-Search of SubCircuit and Qubit Mapping

- Some gates have parameters close to 0
 - Rotation gate with angle close to 0 has small impact on the results
- Iteratively prune small-magnitude gates and fine-tune the remaining parameters \bullet

- Some gates have parameters close to 0
 - Rotation gate with angle close to 0 has small impact on the results
- Iteratively prune small-magnitude gates and fine-tune the remaining parameters \bullet

- Some gates have parameters close to 0
 - Rotation gate with angle close to 0 has small impact on the results
- Iteratively prune small-magnitude gates and fine-tune the remaining parameters \bullet

- Some gates have parameters close to 0
 - Rotation gate with angle close to 0 has small impact on the results
- Iteratively prune small-magnitude gates and fine-tune the remaining parameters \bullet

- Some gates have parameters close to 0
 - Rotation gate with angle close to 0 has small impact on the results
- Iteratively prune small-magnitude gates and fine-tune the remaining parameters \bullet

Evaluation Setups: Benchmarks and Devices

- Benchmarks
 - 4-class
 - VQE task molecules: H2, H2O, LiH, CH4, BeH2
- Quantum Devices
 - IBMQ
 - #Qubits: 5 to 65
 - Quantum Volume: 8 to 128

• QML classification tasks: MNIST 10-class, 4-class, 2-class, Fashion 4-class, 2-class, Vowel

Benchmarks: QNN and VQE

Quantum Neural Networks: classification

Benchmarks: QNN and VQE

Quantum Neural Networks: classification \bullet

• Variational Quantum Eigensolver: finds the ground state energy of molecule Hamiltonian

4-classification: MNIST-4 U3+CU3 on IBMQ-Yorktown

QML Results

Consistent Improvements on Diverse Design Spaces

• H2 in different design spaces on IBMQ-Yorktown

Diverse design spaces

- On large devices
- MNIST-10 accuracy

More
Qubits

↓

Method	Noise-Unaware Searched	Random	Human	QuantumN
Melbourne (15Q, 8QV, use 15Q)	11%	10%	15%	32%
Guadalupe (16Q, 32QV, use 16Q)	14%	12%	10%	15%
Montreal (27Q, 128QV, use 21Q)	13%	7%	14%	16%
Manhattan (65Q, 32QV, use 21Q)	11%	11%	15%	18%

Scalable to Large #Qubits

Effective of Quantum Gate Pruning

• For MNIST-4, Quantum gate pruning improves accuracy by 3% on average

• On 1 Nvidia Titan RTX 2080 ti GPU

Time Cost

Noise-Adaptive Co- search	SubCircuit Training	Deployment on Real QC
3h	0.5h	0.5h
5h	5h	1h
10h	15h	1h

Quantum

Open-source: TorchQuantum

- and machine learning
- https://github.com/mit-han-lab/torchquantum \bullet

• TorchQuantum — An open-source library for interdisciplinary research of quantum computing

Open-source: TorchQuantum

- and machine learning
- https://github.com/mit-han-lab/torchquantum

- Quantum for Machine learning \bullet
 - Quantum neural networks

Quantum kernel methods Torch uantum

• TorchQuantum — An open-source library for interdisciplinary research of quantum computing

Open-source: TorchQuantum

- and machine learning
- https://github.com/mit-han-lab/torchquantum

- Machine Learning for Quantum
 - ML for quantum compilation (qubit mapping, unitary synthesis)

• TorchQuantum — An open-source library for interdisciplinary research of quantum computing

- Features
 - Easy construction of parameterized quantum circuits such as Quantum Neural Networks in PyTorch
 - Support batch mode inference and training on GPU/CPU, supports highly-parallelized training
 - Support easy deployment on real quantum devices such as IBMQ
 - Provide tutorials, videos and example projects of QML and using ML to optimize quantum computer system problems

Tutorial Colab and videos

TorchQuantum Tutorials Opening

Hanrui Wang **MIT HAN Lab**

Examples and tutorials

TorchQuantum Tutorials Quanvolutional Neural Network

Zirui Li, Hanrui Wang MIT HAN Lab

HIT HANLAL

Thank you for listening!

- QuantumNAS exploits SuperCircuit-based co-search for most noise-robust circuit architecture and qubit mapping
- Iterative quantum gate pruning to further remove redundant gates
- Improves MNIST 2-class accuracy from 88% to 95%, 10-class from 15% to 32%
- Save search cost by over **1,000 times**
- Open-sourced **TorchQuantum** library for Quantum + ML research

https://github.com/mit-han-lab/torchquantum

