
Balancing Actuation Energy and 
Computing Energy in Motion Planning

Soumya Sudhakar, Vivienne Sze, Sertac Karaman
Low Energy Autonomy and Navigation (LEAN) Group

CICS Talk - May 5, 2021



Planning a Path to the Coffeeshop

2



Planning a Path to the Coffeeshop

3

What’s the weather like?
When do I need to come 
back by? 
Should I minimize 
waiting at intersections?



Don’t Think Too Hard
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Don’t Think Too Hard
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How do we get an energy-constrained robot 
to decide when it has computed enough? 



Miniature or Long-Duration Robotics are Power-Constrained
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50 mW
Robofly (2020)
100 mg

 

SOURCE: KONGSBERGSOURCE: WASHINGTON 

500 mW
Seaglider (2003)
200 days

Power-constrained 
due to size

Power-constrained 
due to duration



Miniature or Long-Duration Robotics Enable New Solutions

Persistent environmental 
monitoring

Noninvasive targeted drug 
delivery

Space exploration 

Many applications exist for miniature or long-duration robotic platforms that can intelligently navigate

Infrastructure inspections

8



Recent Advances in Low-Power Robotic Platforms
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31 mW 
Robobee (2019) 

500 mW
Seaglider (2003)

132 mW
Chipsat (2016)

 

5.5 W Dash  4.08 W
Racecar

13.5 mW 
Robotic Water 
Strider (2015)

Success in actuating miniature and long-duration robotics at low power in the lab and real-world

Mini Autonomous Blimp (2017) 50 mW
Robofly (2020)

 

SOURCE: KONGSBERG SOURCE: CORNELL

SOURCE: SEOUL NAT’L UNIVERSITY
SOURCE: 
CHEERWING

SOURCE: 
SKY VIPERSOURCE: HARVARD

SOURCE: UNIV. 
OF WASH. SOURCE: GEORGIA TECH



Less Attention Paid to Energy Computing Consumes
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Cassie bipedal robot
[Source: Agility Robotics]

Kashiri et al. 2018

120 Watts
Cassie bi-pedal robot

30 kg 

Avg. Energy per Meter [J/m]

0 100 200

ASIC, FPGA 
[Source: Xilinx]
(power dependent on 
hardware design) 

Cortex-A15 Nvidia Jetson TX2 
[Source: Nvidia]

GPU

Cortex-A7 

Avg. Energy per Second [J/s]

11,000

KUKA arm
[Source: KUKA]
Grebers et al. 2017

300

Tesla Model S at 70 mph
[Source: Tesla]

Sherman 2014, Car and Driver
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Avg. Energy per Meter [J/m]

Avg. Energy per Second [J/s]

Robobee
[Source: 
Harvard]

Cheerwing 
Mini RC 
[Source: 
Cheerwing]

Seaglider 
[Source: 
Kongsberg]

Viper Dash 
[Source: Sky 
Viper]

2 WD Chassis 
[Source: 
Adafruit]

2 WD Chassis 
[Source: 
ElecFreaks]

ASIC, FPGA 
[Source: Xilinx]
(power dependent on 
hardware design) 

Cortex-A15 Nvidia Jetson TX2 
[Source: Nvidia]

GPUEmbedded CPUs 
[Source: ARM] 

Cortex-A7 

For low-power robotics, 
energy to move and 

energy to compute are 
on a similar magnitude 
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Background: Motion Planning
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The motion planning problem

Plan the shortest 
path from the 

start to the goal 
avoiding all 
obstacles
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Node
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Sampling-based motion planner

Sampling-based motion planner find paths by sampling and connecting nodes in free space

Plan the shortest 
path from the 

start to the goal 
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obstacles

The motion planning problem
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Node

Edge

Sampling-based motion planner find paths by sampling and connecting nodes in free space

The motion planning problem Sampling-based motion planner

Plan the shortest 
path from the 

start to the goal 
avoiding all 
obstacles

Computing more nodes → find shorter paths
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Background: Motion Planning

29

Actuation energy = energy consumed by vehicle’s actuators 
(e.g., motors) to move along path 

Computing energy = energy consumed by computer 
   onboard vehicle to compute the path 



Total Energy of Actuation and Computing
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Simulated vehicle that can travel 1 m/s at 1 Watt, 

computing on a Cortex A15 (embedded CPU)
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Simulated vehicle that can travel 1 m/s at 1 Watt, 

computing on a Cortex A15 (embedded CPU)

Total energy

Actuation energy
(energy to move 

along path) 



Total Energy of Planning and Moving
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Simulated vehicle that can travel 1 m/s at 1 Watt, 

computing on a Cortex A15 (embedded CPU)

Total energy

Reducing total energy is now an early stopping 
problem

Computing energy 
(energy to 

compute path) 

Actuation energy
(energy to move 

along path) 



The Work of Actuation and Computation
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The work of actuation and the work of computing have analogous variables
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Total Energy of Planning and Moving
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     # of nodes n 
     actuation energy 
     computing energy

Simulated vehicle that can travel 1 m/s at 1 Watt, 
computing on a Cortex A15 (embedded CPU)

Actuation energy
(energy to move 

along path) 

Computing energy 
(energy to 

compute path) 



Total Energy of Planning and Moving
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Overhead energy 
(energy to decide 

when to stop)

Performance metric includes overhead we introduce
Simulated vehicle that can travel 1 m/s at 1 Watt, 

computing on a Cortex A15 (embedded CPU)

Actuation energy
(energy to move 

along path) 

Computing energy 
(energy to 

compute path) 



Related Work
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Batch-Informed Trees
[Gammell et al. (ICRA 2015)]

Reducing 
computing 
energy

Fast-Marching Trees
[Janson et al. (IJRR 2015)]

Lazy PRM
[Bohlin et al. (ICRA 2000)]

Reducing 
actuation or 
other energy

FPGA acceleration
[Murray et al. (RSS 2016), 
Palossi et al.  (IoT 2019)]

Incorporating terrain 
[Gaganath et al. (TII 2015)]

Incorporating 
communication energy 

[Yan et al (TCNS 2014)]

Hierarchical abstractions
[Larsson et al. (2017)]

2000 2015 2020

Considering 
actuation energy & 
computing energy
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Computing 
energy planner 

will spendActuation 
energy planner 

will save
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Computing 
energy planner 

will spend

Actuation 
energy planner 

will save

Improvement in same 
homotopic class

Improvement from 
homotopic class change

This work:
Computing Energy Included 

Motion Planning (CEIMP)



CEIMP: Underlying Motion Planner
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CEIMP: Track edges in collision with the obstacles to 
“probe” the environment for new homotopic classes
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CEIMP: Model the state of each currently edge in 
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A
B



CEIMP: Model the state of each currently edge in 
collision as ‘repairable’ or ‘unrepairable’

66

A
B

repairable

unrepairable
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CEIMP: Estimate the probability an edge in collision’s 
state is ‘repairable’
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P(edge A is 
repairable)

P(edge B is 
repairable)

P(edge C is 
repairable)

P(edge D is 
repairable)



CEIMP: Estimate the probability an edge in collision’s 
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Pt(edge A is repairable | measurementt = unrepaired) 

Model computing a 
batch of nodes as a 

noisy sensor that 
returns a reading of 

repaired or 
unrepaired 



CEIMP: Estimate the probability an edge in collision’s 
state is ‘repairable’
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Pt(edge A is repairable | measurementt = unrepaired) 

Model computing a 
batch of nodes as a 

noisy sensor that 
returns a reading of 

repaired or 
unrepaired 

What is the probability 
an edge in collision is 

a repairable edge, 
given we haven’t been 

able to repair it yet? 



Computing as a Measurement
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edge ∈ {repairable, unrepairable}
measurement from sampling a batch of nodes ∈ {repaired, unrepaired}



Computing as a Measurement
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P(measurement = unrepaired) =
a if  edge is repairable

1 if  edge is unrepairable

edge ∈ {repairable, unrepairable}
measurement from sampling a batch of nodes ∈ {repaired, unrepaired}



Computing as a Measurement
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P(measurement = unrepaired) =
a if  edge is repairable

1 if  edge is unrepairable

edge ∈ {repairable, unrepairable}
measurement from sampling a batch of nodes ∈ {repaired, unrepaired}

Pt(edge A is repairable | measurementt = unrepaired) 
= 𝜂P(measurement = unrepaired | edge A is repairable)Pt-1(edge A is repairable)

Binary Bayesian filtering
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CEIMP: Run a search algorithm on probabilistic graph 
to return the shortest expected path

P(edge A is 
repairable)

P(edge B is 
repairable)

P(edge C is 
repairable)

P(edge D is 
repairable)
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CEIMP stops too early, misses savings 
from homotopic class change

Oracle (true) minimum stopping point
CEIMP stopping point (this work)
Baseline stopping point

Oracle (true) minimum stopping point
CEIMP stopping point (this work)
Baseline stopping point

CEIMP successful at stopping close to true minimum

Simulated vehicle that can travel 1 m/s at 1 Watt, computing on a Cortex A15 (embedded CPU)
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Example path returned by baseline

Example path returned by CEIMP

Oracle (true) minimum stopping point
CEIMP stopping point (this work)
Baseline stopping point

CEIMP successful at stopping close to true minimum

Simulated vehicle that can travel 1 m/s at 1 Watt, computing on a Cortex A15 (embedded CPU)
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CEIMP successful at stopping close to true minimum

Oracle (true) minimum stopping point
CEIMP stopping point (this work)
Baseline stopping point

On average across 10 MIT floorplans, CEIMP saves 2.1x-8.9x the energy compared to baseline

Simulated vehicle that can travel 1 m/s at 1 Watt, computing on a Cortex A15 (embedded CPU)

Example path returned by baseline

Example path returned by CEIMP
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Energy to compute 1 sec relative to the energy to move 1 meter
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As the the energy to compute becomes more expensive relative 
to the energy to move, CEIMP will increase energy savings

Energy to compute 1 sec relative to the energy to move 1 meter

(this work)



Key Takeaways

● Don’t think too hard: A longer path that we 
have now can be better than a shorter path 
that we have to compute a long time to find
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Key Takeaways

● Don’t think too hard: A longer path that we 
have now can be better than a shorter path 
that we have to compute a long time to find

● Computing is (noisy) sensing: Sampling 
nodes in a motion planner can be modeled 
as a noisy sensor that returns whether a 
path is open or closed
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