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How to measure BP ?

1. easyauscultation.com
2. 10.1126/scitranslmed.aap8674
3. Edwards Lifesciences
4. Emergency Medicine Procedures

Radial artery Catheterization

Intensive Care Unit

Oscillometry

Auscultation

Outside Intensive Care Unit
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Ultrasound based device to measure BP 
waveform 

A Non-invasive Central Arterial Pressure Waveform Estimation System using Ultrasonography for Real-time Monitoring , MIT Thesis 2018
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Ultrasound based device to measure BP 
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Overview
• Predict the blood pressure (BP) waveform from the photoplethysmogram

(PPG) waveform
• Both in time domain

• Setting 1: only regress the shape of the BP from the shape of PPG
• No information on the scale of the waveform (no information on MAP and pulse 

pressure)

• Setting 2: Regress the absolute values of BP from absolute PPG
• Contains information of MAP and pulse pressure



Dataset: VitalDB database*
• 3045 patients data
• Each contains around 10000 beats
• Besides BP and PPG, also contains anthropometric data

*https://vitaldb.net/data-bank/



Dataset
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Dataset
• Besides BP and PPG, also contains anthropometric data



Dataset
• MAP and mean PPG distribution:



Input features to the ML model

Data Type Feature
Vector PPG Waveform
Scalar Age
Scalar Sex
Scalar Weight
Scalar Height
Scaler BMI



Input features preprocessing
• Settings 1: Normalize PPG & BP within each beat for 

(the scale information is removed)
No information on MAP and pulse pressure
• Setting2: Normalize PPG & BP across all beats

(the scale information is still maintained)
• Resample the input vectors to 100 time steps
• The target BP wave is also resampled to 100 time steps
• Standardization of each feature among all samples
• Repeat and concatenate other scalars with PPG vector 

to get the input features

PPG

t: time 
steps
(100)

Age
Sex
W

eight

k: num of features (6)

Height
BM

I



Input features preprocessing
• FC to project the input features to a higher dimension embedding (from 6 to 256)

Feature embeddings
t: time 
steps
(100)

embedding_dim (256)

Fully-Connected

PPG

t: time 
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ML model
• Convolution + Attention
• Pure convolution

Feature embeddings
t: time 
steps
(100)

embedding_dim (256)



Feature embeddings

ML model: Convolution + Attention
• Firstly apply 1D convolution, stride=1, kernel_size=3, padding=1
• Output feature_dim = embedding_dim = 256

t: time 
steps
(100)

embedding_dim (256)

Conv Kernel 0
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ML model: Convolution + Attention
• Firstly apply 1D convolution, stride=1, kernel_size=3, padding=1
• Output feature_dim = embedding_dim = 256

Feature embeddings
t: time 
steps
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ML model: Convolution + Attention
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ML model: Convolution + Attention
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ML model: Pure Convolution
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Model training settings
• Model Architecture
• Conv+attention: 3 conv layers + 3 attention layers
• Pure convolution: 6 conv layers
• Hidden dim and embedding dim = 256
• In the last layer, feature of each time step goes through a regressor to get one time-

step of the BP

• Training on 2400 subjects, validation on 300 and test on 300
• Train:validation:test=8:1:1

• For each subject, we use 10 beats
• Train for 300 epochs with Adam optimizer



Experimental Results
• Settings 1: regress the BP shape

MSE (normalized) Scale back to mmHg
Conv+Attention 0.212 3.45
Pure Conv 0.224 3.66

MSE (normalized) Scale back to mmHg
Conv+Attention 0.86 69.3
Pure Conv 0.89 71.7

*Typically, less than 7mmHg can be considered accurate

• Setting 2: regress the BP absolute values



Visualizations for Setting 1: BP shape regression
• Conv + Attention

Time step Time step

Time step Time step

Normalized BP

Normalized BP Normalized BP

Normalized BP



Conclusion and Next Steps
• Attention and convolution based ML models can provide accurate 

prediction of BP shape from PPG shape; but the prediction for absolute BP 
values is not good enough.
• Try to regress the shape, mean and std separately to improve accuracy
• Try different models (LSTM, pure attention, etc)
• Deployment:
• Reduce model size with pruning and quantization
• Hardware aware architecture search with HAT*
• On the raspberry pi or microcontrollers with TinyEngine*

Wang, Hanrui, et al. "Hat: Hardware-aware transformers for efficient natural language processing." arXiv preprint 
arXiv:2005.14187 (2020).
Lin, Ji, et al. "Mcunet: Tiny deep learning on iot devices." arXiv preprint arXiv:2007.10319 (2020).
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