Algorithms for Continuous Absolute Blood Pressure Monitoring

Hanrui Wang^{*}, Anand Chandrasekhar^{*}, Joohyun Seo, Aaron Aguirre, Song Han, C. G. Sodini, H. S. Lee

Microsystems and Technology Laboratory, MIT

How to measure BP ?

- 1. easyauscultation.com
- 2. 10.1126/scitranslmed.aap8674
- 3. Edwards Lifesciences
- 4. Emergency Medicine Procedures

Ultrasound based device to measure BP waveform

A Non-invasive Central Arterial Pressure Waveform Estimation System using Ultrasonography for Real-time Monitoring , MIT Thesis 2018

Butterfly IQ

Ultrasound based device to measure BP waveform

Overview

- Predict the blood pressure (BP) waveform from the photoplethysmogram (PPG) waveform
 - Both in time domain
- Setting 1: only regress the shape of the BP from the shape of PPG
 - No information on the scale of the waveform (no information on MAP and pulse pressure)
- Setting 2: Regress the absolute values of BP from absolute PPG
 - Contains information of MAP and pulse pressure

Dataset: VitalDB database*

- 3045 patients data
- Each contains around 10000 beats
- Besides BP and PPG, also contains anthropometric data

Dataset

• Besides BP and PPG, also contains anthropometric data

Dataset

• Besides BP and PPG, also contains anthropometric data

Dataset

• MAP and mean PPG distribution:

MAP

Mean_PPG

Input features to the ML model

Data Type	Feature	
Vector	PPG Waveform	
Scalar	Age	
Scalar	Sex	
Scalar	Weight	
Scalar	Height	
Scaler	BMI	

Input features preprocessing

- Settings 1: Normalize PPG & BP within each beat for (the scale information is removed) No information on MAP and pulse pressure
- Setting2: Normalize PPG & BP across all beats (the scale information is still maintained)
- Resample the input vectors to 100 time steps
- The target BP wave is also resampled to 100 time steps
- Standardization of each feature among all samples
- Repeat and concatenate other scalars with PPG vector to get the input features

k: num of features (6)

t: time

steps

(100)

Input features preprocessing

• FC to project the input features to a higher dimension embedding (from 6 to 256)

ML model

- Convolution + Attention
- Pure convolution

t: time steps (100)

Feature embeddings

embedding_dim (256)

- Firstly apply **1D convolution**, stride=1, kernel_size=3, padding=1
- Output feature_dim = embedding_dim = 256

- Firstly apply 1D convolution, stride=1, kernel_size=3, padding=1
- Output feature_dim = embedding_dim = 256

- Firstly apply 1D convolution, stride=1, kernel_size=3, padding=1
- Output feature_dim = embedding_dim = 256

- Firstly apply 1D convolution, stride=1, kernel_size=3, padding=1
- Output feature_dim = embedding_dim = 256

- Firstly apply 1D convolution, stride=1, kernel_size=3, padding=1
- Output feature_dim = embedding_dim = 256

ML model: Pure Convolution

BP waveform

Model training settings

- Model Architecture
 - Conv+attention: 3 conv layers + 3 attention layers
 - Pure convolution: 6 conv layers
 - Hidden dim and embedding dim = 256
 - In the last layer, feature of each time step goes through a regressor to get one timestep of the BP
- Training on 2400 subjects, validation on 300 and test on 300
 - Train:validation:test=8:1:1
- For each subject, we use 10 beats
- Train for 300 epochs with Adam optimizer

Experimental Results

• Settings 1: regress the BP shape

	MSE (normalized)	Scale back to mmHg
Conv+Attention	0.212	3.45
Pure Conv	0.224	3.66

• Setting 2: regress the BP absolute values

	MSE (normalized)	Scale back to mmHg
Conv+Attention	0.86	69.3
Pure Conv	0.89	71.7

*Typically, less than 7mmHg can be considered accurate

Visualizations for Setting 1: BP shape regression

Conv + Attention

Conclusion and Next Steps

- Attention and convolution based ML models can provide accurate prediction of BP shape from PPG shape; but the prediction for absolute BP values is not good enough.
- Try to regress the shape, mean and std **separately** to improve accuracy
- Try different models (LSTM, pure attention, etc)
- Deployment:
 - Reduce model size with pruning and quantization
 - Hardware aware architecture search with HAT*
 - On the raspberry pi or microcontrollers with TinyEngine*

Wang, Hanrui, et al. "Hat: Hardware-aware transformers for efficient natural language processing." arXiv preprint arXiv:2005.14187 (2020). Lin, Ji, et al. "Mcunet: Tiny deep learning on iot devices." arXiv preprint arXiv:2007.10319 (2020).

Thank you!

