A Miniaturized Data Center Power Supply Using a Split-Phase, Fractional Turn Transformer

Data Centers Are An Important and Growing Load

- Much of our virtual world "lives" in data centers
- Represent ~2% of total US electrical energy consumption
 - ~ Total solar PV energy produced in 2019

Data Centers Rely on Many Power Electronic Converters

- 75% eff. typical (converters *only*)
- Much lower if cooling power included

■ On server level, power supply miniaturization especially important

Open Compute Project Server

What Does This Supply Look Like Schematically?

https://www.ti.com/tool/PMP20289

Three Conversion Steps, but the Transformer Does the Most

https://www.ti.com/tool/PMP20289

High Step-Down, High Current Transformer is a Critical Bottleneck

[[]A] https://www.ti.com/tool/PMP20289

[[]B] https://benchmarking.ihsmarkit.com/550162/teardown-delta-dps-1600ab-4-a-psu

Review: Transformer Operating Principle

$$\blacksquare \frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{v}{N}$$
 (sign by Lenz's Law)

Review: Transformer Operating Principle

 $\blacksquare \frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{v}{N} \text{ (sign by Lenz's Law)}$

Planar Transformers Use PCB Windings

Windings of inductors/transformers implemented as copper traces on printed circuit boards (PCBs)

Fig. 1. Planar transformer.

Planar Magnetics are Cheap, Easy to Build, with Great Thermals

- Low profile (minimize box volume)
- Good thermal characteristics (high surface area to volume)
- Ease of manufacturability
- Highly repeatable
- Lower cost than wire-wound alternatives

Fig. 1. Comparison of thermal behavior between conventional core and planar core.

Many Turns and High Currents are Difficult in Planar Transformers

It Can Also Be Difficult to Use Additional Layers

Non-interleaved

Resistance vs. Capacitance Trade-off of Interleaving

Resistance vs. Capacitance Trade-off of Interleaving

With Realistic Terminations, Loss Can Be Much Higher Than Expected

Ideal, perfectly terminated Practically terminated

Key: Avoid complex vertical stack-ups in this application space

With Realistic Terminations, Loss Can Be Much Higher Than Expected

Key: Avoid complex vertical stack-ups in this application space

Minimizing Turns Count is Greatly Advantageous

Minimizing Turns Count is Greatly Advantageous

A Fractional Turn is What We Want...

A Fractional Turn is What We Want... But Not Practical

A Fractional-Turn Transformer Using a New Kind of Structure

Orthographic View

Side View

Top View

Assume Physical Symmetry About Center of the Core

Assume symmetry

Orthographic View

Excite the Primary Winding, Flux Flows Symmetrically

Assume symmetry

Orthographic View

Symmetry and Magnetic Core Enforce Equal Currents

Assume symmetry

Orthographic View

$$\oint H. \, dl = 8i_p - i_1 = 8i_p - i_2$$

 $i_1 = i_2$ by symmetry

Symmetrically Distribute Two Full Bridge Rectifiers Around the Core

Top View

The Structure Behaves Like a Fractional Turn Transformer

Top View

- **■** Free to treat conductors as independent elements
- **■** Connections yield:

$$2V_o = \frac{V_p}{N_p}$$

$$\frac{V_o}{V_p} = \frac{1/2}{N_p}$$

A fractional turn transformer

Equivalence of induced currents is ensured by symmetry

Equivalence of induced currents is ensured by symmetry **Connecting electronics are** physically distributed around the core

Equivalence of induced currents is ensured by symmetry

physically distributed

around the core

Connecting electronics are

Electronics can be controlled to modify magnetic properties

FB/FB:

FB/HB:

 N_p : 1 HB/HB:

HB/0: N_p : 2

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

Equivalence of induced currents is ensured by symmetry

Electronics can be controlled to modify magnetic properties

FB/FB: $N_p:\frac{1}{2}$

FB/HB: N_p :

HB/HB: N_p : 1

HB/0: $N_p: 2$

Connecting electronics are physically distributed around the core

Higher switch count, but each carries less current (effectively paralleled)

Equivalence of induced currents is ensured by symmetry

 $+v_o$

Electronics can be controlled to modify magnetic properties

FB/FB: $N_p:\frac{1}{2}$

FB/HB: *N_p*:

HB/HB: N_n : 1

HB/0: $N_p: 2$

Connecting electronics are physically distributed around the core

Requires a different modeling framework

Higher switch count, but each carries less current (effectively paralleled)

VIRT Exponentially Reduces Copper Loss

VIRT Exponentially Reduces Copper Loss and Increases Core Loss

The Conventional Approach: Increasing Phase Count

Wound such that equal and opposite flux flows on outer legs

Combine cores for volume reduction

Increasing Phase Count Yields Linear Rebalancing

These Techniques Offer Distinct Loss Trade-offs

"Gear Shifting" Transformer Core and Copper Loss

SPHTV Prototype

■ 4 layer, non-interleaved SPP, 3/2/3oz

Prototype is Extremely Efficient

Losses and Thermal Performance Well Predicted

Losses fit expectation

Fig. 12: Estimated loss breakdown at full load, not including hotel power (2.7W) and fan power (1.44W).

Thermal performance

Fig. 7: ANSYS Icepak thermal simulation of the transformer.

Fig. 11: Thermal image of secondary-side under full-load (obtained after 15 minutes of continuous operation, 22°C room temperature). The fan is located to the right of the PCB.

SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

380-12V, 1kW

	This work	MT [6]
Stack-up	S/_/P/P	S/P/P/S
Peak power	97.7%	-
stage efficiency		
Peak efficiency	97.3%	97.1%
including hotel		
power		
Full load loss	29.9	34.4
(power stage		
only) [W]		
Transformer loss	10.8	16.3
at full load [W]		
Transformer	1536	2200
footprint [mm ²]		
Height [mm]	9.23	7.3
Transformer box	14.2	16.1
volume [cm ³]		

a 'G' is a secondary layer tied directly to secondary ground

[6] M. Mu and F. C. Lee, "Design and optimization of a 380–12 v high frequency, high-current IIc converter with gan devices and planar matrix transformers," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 854–862, 2016.

SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

Increase Degree of

Fractional

Turn

 $\sim P_{cu}/16$, $\sim 2^{2\beta}P_{core}$

380-12V, 1kW

	This work	MT [6]	QTT [11]
Stack-up	S/_/P/P	S/P/P/S	S/G/P/P/G/Sa
Peak power	97.7%	-	97.0%
stage efficiency			
Peak efficiency	97.3%	97.1%	-
including hotel			
power			
Full load loss	29.9	34.4	41
(power stage			
only) [W]			
Transformer loss	10.8	16.3	13.2
at full load [W]			
Transformer	1536	2200	2500
footprint [mm ²]			
Height [mm]	9.23	7.3	8.9
Transformer box	14.2	16.1	22.3
volume [cm ³]			

a 'G' is a secondary layer tied directly to secondary ground

[6] M. Mu and F. C. Lee, "Design and optimization of a 380-12 v high frequency, high-current IIc converter with gan devices and planar matrix transformers," IEEE Journal of Emerging and Selected Topics in

[11] Y. Liu, K. Chen, C. Chen, Y. Syu, G. Lin, K. A. Kim, and H. Chiu, "Quarter-turn transformer design and optimization for high power density 1-mhz llc resonant converter," IEEE Transactions on Industrial

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in IEEE Transactions 42 on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

Much More Efficient, Capable, Smaller than Industry Reference Design

https://www.ti.com/tool/PMP20289

Conclusion

- Coupled Electronic and Magnetic System (CEMS) paradigm enables the VIRT concept
- Fractional and variable turns ratios unachievable in conventional design
- Used to build much smaller and much more efficient datacenter supply

