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Data Centers Are An Important and Growing Load

Server rack cabinets

B Much of our virtual world “lives” in data centers

B Represent ~2% of total US electrical energy consumption
M ~ Total solar PV energy produced in 2019

L. Barroso, J. Clidaras, U. Holzle, The Datacenter as a Computer. 2nd ed. Morgan & Claypool, 2013. p. 49, Fig. 4.1



Data Centers Rely on Many Power Electronic Converters

Conventional AC Architecture

B /5% eff. typical (converters only)
® Much lower if cooling power included

® On server level, power supply
miniaturization especially important

L. Barroso, J. Clidaras, U. Holzle, The Datacenter as a Computer. 2nd ed. Morgan & Claypool, 2013. p. 52, Fig. 4.2

R. Miller, “Facebook Opens its Server, Data Center Designs.”
https://www.datacenterknowledge.com/archives/2011/04/07/facebook-opens-its-server-data-center-designs
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What Does This Supply Look Like Schematically?
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Three Conversion Steps, but the Transformer Does the Most
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High Step-Down, High Current Transformer is a Critical Bottleneck

384V

Convert to ac

192V

—_ |——>

12V/500W

B 12V/1KW

[A] https://www.ti.com/tool/PMP20289

[B] https://benchmarking.ihsmarkit.com/550162/teardown-delta-dps-1600ab-4-a-psu
[C] M. Kasper, D. Bortis, J. W. Kolar and G. Deboy, "Hyper-efficient (98%) and super-compact (3.3kW/dm3) isolated AC/DC telecom power supply module based on multi-cell converter approach," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 150-157
[D] C. Fei, R. Gadelrab, Q. Li and F. C. Lee, "High-Frequency Three-Phase Interleaved LLC Resonant Converter With GaN Devices and Integrated Planar Magnetics," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 2, pp. 653-663, June 2019.
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Review: Transformer Operating Principle
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Planar Transformers Use PCB Windings

® Windings of inductors/transformers implemented as copper traces on
printed circuit boards (PCBSs)

Magnetic
core
center
post
(milled)

Fig. 1. Planar transformer.

L. H. Dixon, “Designing planar magnetics,” Texas Instruments Application Note. [Online]. Available: http://www.ti.com/download/trng/docs/seminar/Topic4LD.pdf



Planar Magnetics are Cheap, Easy to Build, with Great Thermals

B Low profile (minimize box volume)

B Good thermal characteristics (high surface areato
volume)

B Ease of manufacturability s ey

B Highly repeatable

B Lower cost than wire-wound | [
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Fig. 1. Comparison of thermal behavior between conventional core and
planar core.

Z. Ouyang and M. A. E. Andersen, “Overview of planar magnetic technology - fundamental properties," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4888-4900, Sep. 2014
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Many Turns and High Currents are Difficult in Planar Transformers

Copper

o s s s I I
Magnetic
core
center
post
(milled)

B Poor “fill factor”

12 turns

of turns

>2X reduction in

Twice the number

trace width

>4x the dc

v

resistance

v

M Little area for copper

M Large penalty for
many turns on a layer
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It Can Also Be Difficuilt to Use Additional Layers

Non-interleaved

paralleled Most current flows on
sec.turns | first two layers

= +— High magnetic field

turns -

«—— Current more evenly

e e e e distributed between
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Resistance vs. Capacitance Trade-off of Interleaving

Not interleaved Interleaved Ideally interleaved

ac resistance > lower

CapaCitance — h|gher
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Resistance vs. Capacitance Trade-off of Interleaving

Not interleaved Interleaved Ideally interleaved

ac resistance > lower
CapaCitance — h|gher

termination — MUCh h|gher

loss 14



With Realistic Terminations, Loss Can Be Much Higher Than Expected

Ideal, perfectly terminated Practically terminated

Key: Avoid complex vertical stack-ups in this application space 15



With Realistic Terminations, Loss Can Be Much Higher Than Expected

Ideal, perfectly terminated Practically terminated

Excursion
penalties

Key: Avoid complex vertical stack-ups in this application space 16



Minimizing Turns Count is Greatly Advantageous

16:1

28W

" Copper Loss
¥ Core Loss
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Minimizing Turns Count is Greatly Advantageous

32:2 16:1
\ 66W

28W

" Copper Loss
¥ Core Loss
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A Fractional Turn is What We Want...

16:1
\ 28W
I ?

W Copper Loss
" Core Loss

8:0.5
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A Fractional Turn is What We Want... But Not Practical

" Copper Loss
¥ Core Loss
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A Fractional-Turn Transformer Using a New Kind of Structure

Orthographic View Side View Top View
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Assume Physical Symmetry About Center of the Core

Assume symmetry

Orthographic View Side View Top View
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Excite the Primary Winding, Flux Flows Symmetrically

Assume symmetry

Orthographic View Side View Top View
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Symmetry and Magnetic Core Enforce Equal Currents

Assume symmetry

Orthographic View Side View Top View

fHdl= 8ip—i1 =8ip—i2 : il = iz by symmetry
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Symmetrically Distribute Two Full Bridge Rectifiers Around the Core

Top View
a7

YGND

Step down Convert to dc

16:1 12V

NEErEy
156 a

—

12V

1kW, 83A

25



The Structure Behaves Like a Fractional Turn Transformer

Top View
a7

M Free to treat conductors as independent elements
B Connections yield:

v
2V, =L

IVP
Ve 1/2
VP IVP

A fractional turn transformer
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VIRT: An Example of a Coupled Electronic and Magnetic System

7

Equivalence of induced
currents is ensured by
symmetry

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down
Conversion Ratios," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959. 27



VIRT: An Example of a Coupled Electronic and Magnetic System

Equivalence of induced
currents is ensured by
symmetry

Connecting electronics are
physically distributed
around the core

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down
Conversion Ratios," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959. 28



VIRT: An Example of a Coupled Electronic and Magnetic System

Electronics can be
controlled to modify
magnetic properties

Equivalence of induced
currents is ensured by

symmetry FB/FB: Np:>
FB/HB:  Np::
HB/HB: N,:1
HB/O: N,:2

Connecting electronics are
physically distributed
around the core

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down
Conversion Ratios," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.
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VIRT: An Example of a Coupled Electronic and Magnetic System

Electronics can be
controlled to modify
magnetic properties

Equivalence of induced
currents is ensured by

symmetry FB/FB: Np:>
FB/HB:  Np::
HB/HB: N,:1
HB/O: N,:2

Connecting electronics are
physically distributed
around the core

} Higher switch count, but
each carries less current
(effectively paralleled)

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down
Conversion Ratios," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.
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VIRT: An Example of a Coupled Electronic and Magnetic System

Equivalence of induced
currents is ensured by
symmetry

Connecting electronics are

physically distributed
around the core

Requires a different modeling framework

Electronics can be
controlled to modify
magnetic properties

. 1
FB/FB: NP'E
. 2
FB/HB: Np.g
HB/HB: N,:1
HB/O: N,:2

} Higher switch count, but

each carries less current
(effectively paralleled)

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down
Conversion Ratios," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.
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VIRT Exponentially Reduces Copper Loss

" Copper Loss
P. < i’R B Core Loss
cu
P cu
Increase
Degree of Single-phase
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Exponential
Rebalancing
P cu
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~Peu /4, NZBPcore 8: 0-5
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VIRT Exponentially Reduces Copper Loss and Increases Core Loss

Increase
Degree of
Fractional

Turn

|

Exponential
Rebalancing

Single-phase .
16:1

PCLU PCOT‘E

Single-phase Half-turn

~ cu/4: NZBPcore 8:0-5

P_., < i*R

Pcu

PCOTB

V\f—2_3

OC_
N

Pcore

P ore X 2F

33



The Conventional Approach: Increasing Phase Count

Wound such that equal and
opposite flux flows on outer legs

Combine cores for volume
reduction
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Increasing Phase Count Yields Linear Rebalancing

Increase Phase Count = Linear Rebalancing

Single-phase Split-phase
Pcw Pcore ~ cu/zr ""ZPcore
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These Techniques Offer Distinct Loss Trade-offs

Increase Phase Count =—— Linear Rebalancing

Increase
Degree of
Fractional

Turn

|

Exponential
Rebalancing

Single-phase

PCU' Pcore

Single-phase Half-turn

~ cu/4: "'ZBPcore

What we
can do now

What we’ve
been doing
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“Gear Shifting” Transformer Core and Copper Loss

Increase Phase Count =—— Linear Rebalancing

Increase
Degree of
Fractional

Turn

|

Exponential
Rebalancing

M. K. Ranjram and D. J. Perreault, "Leveraging Multi-Phase and Fractional-Turn Integrated Planar Transformers for Miniaturization in Data Center Applications," 2020 IEEE 21st Workshop
on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 2020, pp. 1-8, doi: 10.1109/COMPEL49091.2020.9265752.
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SPHTYV Prototype
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Prototype is Extremely Efficient

Efficiency (%)
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Losses and Thermal Performance Well Predicted

Losses fit expectation Thermal performance
12 —_ Air flow Top View Rectifier switches
-CUre empera e 1nvs
10t I Prim. | T[Cﬁlsiursl;r )
: | sec. 92.4 | m
ol I Cond | l o '
— EmC,.. '
= |l Cond. 75.3
3 5 BNESR ||

SPHTV Inverter Rectifier C0 dc bus Other

Fig. 12: Estimated loss breakdown at full load, not including
hotel power (2.7W) and fan power (1.44W).

Fig. 11: Thermal image of secondary-side under full-load
(obtained after 15 minutes of continuous operation, 22°C room
temperature). The fan is located to the right of the PCB.
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SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

Increase Phase Count = Linear Rebalancing ,
—B |
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[6] M. Mu and F. C. Lee, “Design and optimization of a 380—12 v high frequency,high-current lic converter with gan devices and planar matrix transformers,” IEEE Journal of Emerging and Selected Topics in

Power Electronics, vol. 4, no. 3, pp. 854-862, 2016.

[11] Y. Liu, K. Chen, C. Chen, Y. Syu, G. Lin, K. A. Kim, and H. Chiu,“Quarter-turn transformer design and optimization for high power density 1-mhz lic resonant converter,” IEEE Transactions on Industrial 41
Electronics, vol. 67, no. 2, pp. 1580-1591, 2020.



SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

Increase Phase Count = Linear Rebalancing , 3 8 O 2 k
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[11] Y. Liu, K. Chen, C. Chen, Y. Syu, G. Lin, K. A. Kim, and H. Chiu,“Quarter-turn transformer design and optimization for high power density 1-mhz lic resonant converter,” IEEE Transactions on Industrial

Electronics, vol. 67, no. 2, pp. 1580-1591, 2020.

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in IEEE Transactions

on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.
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Much More Efficient, Capable, Smaller than Industry Reference Design

Front Orthographic
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Conclusion

B Coupled Electronic and Magnetic System (CEMS) paradigm enables the
VIRT concept

B Fractional and variable turns ratios unachievable in conventional design
B Used to build much smaller and much more efficient datacenter supply

44



