
Han Cai

Efficient Neural Architecture Search and
Tiny Transfer Learning

• Memory: 32GB
• Computation: FLOPS1012

Cloud AI Mobile AI Tiny AI (AIoT)

• Memory: 4GB
• Computation: FLOPS109

• Memory: 100 KB
• Computation: < FLOPS106

Challenge: Efficient Inference on Diverse Hardware Platforms

• Different hardware platforms have different resource constraints. We need to customize
our models for each platform to achieve the best accuracy-efficiency trade-off,
especially on resource-constrained edge devices.

less
resource

less
resource

3

Design Cost (GPU hours)

200

The design cost is calculated under the assumption of using MobileNet-v2.

For devices:
 For search episodes: // meta controller
 For training iterations:
 forward-backward();
 If good_model: break;
 For post-search training iterations:
 forward-backward();

2019

Challenge: Efficient Inference on Diverse Hardware Platforms

4
The design cost is calculated under the assumption of using MnasNet.
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

Design Cost (GPU hours)

40K

For devices:
 For search episodes: // meta controller
 For training iterations:
 forward-backward();
 If good_model: break;
 For post-search training iterations:
 forward-backward();

Expensive

Expensive

2019

Challenge: Efficient Inference on Diverse Hardware Platforms

For devices:
 For search episodes: // meta controller
 For training iterations:
 forward-backward();
 If good_model: break;
 For post-search training iterations:
 forward-backward();

5

Diverse Hardware Platforms

The design cost is calculated under the assumption of using MnasNet.
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

160K

40K

Design Cost (GPU hours)

2019 2017 2014 2010

Expensive!

Expensive!

Challenge: Efficient Inference on Diverse Hardware Platforms

6

Diverse Hardware Platforms

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

The design cost is calculated under the assumption of using MnasNet.
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

For many devices:
 For search episodes: // meta controller
 For training iterations:
 forward-backward();
 If good_model: break;
 For post-search training iterations:
 forward-backward();

Expensive!!

Expensive!!

Challenge: Efficient Inference on Diverse Hardware Platforms

7

Diverse Hardware Platforms

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to
Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

For many devices:
 For search episodes: // meta controller
 For training iterations:
 forward-backward();
 If good_model: break;
 For post-search training iterations:
 forward-backward();

Expensive!!

Expensive!!

Challenge: Efficient Inference on Diverse Hardware Platforms

Evolved Transformer ICML’19, ACL’19

We need Green AI:
Solve the Environmental Problem of NAS

Ours 52 4 orders of magnitude ACL’20
“Hardware-Aware Transformer”

TinyML comes at the cost of BigML
(inference) (training/search)

Problem:

Once-for-all, ICLR’20 9

Diverse Hardware Platforms

…

Once-for-All Network

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to
Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

Challenge: Efficient Inference on Diverse Hardware Platforms

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

OFA: Decouple Training and Search

10

Conventional NAS
with meta controller

For devices:
 For search episodes: // meta controller
 For training iterations:
 forward-backward();
 If good_model: break;
 For post-search training iterations:
 forward-backward();

Expensive

Expensive

=>

Once-for-All:

For OFA training iterations:
 forward-backward();

For devices:
 For search episodes:
 sample from OFA;
 If good_model: break;
 directly deploy without training;

Expensive
training

search
decouple

Light-Weight

Light-Weight

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

11

once-for-all network

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

12

once-for-all network

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

13

once-for-all network

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20 14

…

once-for-all network

Once-for-All Network:
Decouple Model Training and Architecture Design

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Challenge: how to prevent different subnetworks
from interfering with each other?

15

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Solution: Progressive Shrinking

16

• Training once-for-all network is much more challenging than training a normal
neural network given so many sub-networks to support.

• Progressive Shrinking can support more than different sub-networks in a
single once-for-all network, covering 4 different dimensions: resolution, kernel
size, depth, width.

1019

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20 17

Train the
full model

Shrink the model
(4 dimensions)

Jointly fine-tune
both large and

small sub-networks

• Small sub-networks are nested in large sub-networks.
• Cast the training process of the once-for-all network as a progressive shrinking and

joint fine-tuning process.

once-for-all
network

Progressive Shrinking

Solution: Progressive Shrinking
• Training once-for-all network is much more challenging than training a normal

neural network given so many sub-networks to support.
• Progressive Shrinking can support more than different sub-networks in a

single once-for-all network, covering 4 different dimensions: resolution, kernel
size, depth, width.

1019

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Connection to Network Pruning

18

Train the
full model

Shrink the model
(only width)

Fine-tune
the small net

single pruned
network

Network Pruning

Train the
full model

Shrink the model
(4 dimensions)

Fine-tune
both large and
small sub-nets

once-for-all
network

• Progressive shrinking can be viewed as a generalized network pruning with much
higher flexibility across 4 dimensions.

Progressive Shrinking

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20 19

Performances of Sub-networks on ImageNet
Im

ag
eN

et
 T

op
-1

 A
cc

 (%
)

67

70

73

75

78
w/o PS w/ PS

D=2
W=3
K=3

D=2
W=3
K=7

D=2
W=6
K=3

D=2
W=6
K=7

D=4
W=3
K=3

D=4
W=3
K=7

D=4
W=6
K=3

D=4
W=6
K=7

2.5%
2.8%

3.5%
3.4% 3.3%

3.4%
3.7%

3.5%

Sub-networks under various architecture configurations
D: depth, W: width, K: kernel size

• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

Accuracy / Latency Predictor

20

Once-for-All Network
 

RMSE ~0.2%
Acc Dataset

[Architecture, Accuracy]

Latency Dataset
[Architecture, Latency]

Accuracy Predictor

Latency Predictor

Evolutionary
Architecture Search Specialized

Sub-Network

https://arxiv.org/pdf/1908.09791.pdf

OFA: 80% Top-1 Accuracy on ImageNet

21

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81

Im
ag

eN
et

 T
op

-1
 a

cc
ur

ac
y

(%
)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→

The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation
595M MACs
80.0% Top-1

Model Size

• Once-for-all sets a new state-of-the-art 80% ImageNet top-1 accuracy under
the mobile vision setting (< 600M MACs).

Once-for-all, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf

Accuracy & Latency Improvement

22

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400

OFA
EfficientNet

76.3

78.8

79.8
79.8

78.7

Google Pixel1 Latency (ms)

80.1 2.6x faster

3.8% higher
accuracy

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

OFA
MobileNetV3

75.2

73.3

70.4

67.4

76.4

74.9

73.3

71.4

4% higher
accuracy

1.5x faster

• Training from scratch cannot achieve the same level of accuracy

Once-for-all, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf

Once-for-all, ICLR’20

OFA Enables Fast Specialization on Diverse Hardware Platforms

23

Samsung S7 Edge Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

25 40 55 70 85 100

OFA MobileNetV3 MobileNetV2

75.2

73.3

70.4

67.4

70.5

73.1

74.7

76.3

Google Pixel2 Latency (ms)

67

69

71

73

75

77

23 28 33 38 43 48 53 58 63 68

75.2

73.3

70.4

67.4

75.8
74.7

73.4

71.5

LG G8 Latency (ms)

67

69

71

73

75

77

7 10 13 16 19 22 25

75.2

73.3

70.4

67.4

76.4

74.7

73.0

71.1

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

10 14 18 22 26 30
NVIDIA 1080Ti Latency (ms)

Batch Size = 64

60.3

65.4

69.8
72.0

72.6
73.8

75.3 76.4

58

62

66

69

73

77

9 11 13 15 17 19
Intel Xeon CPU Latency (ms)

Batch Size = 1

60.3

65.4

69.8
72.0

71.1

74.6
75.7

72.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
Xilinx ZU3EG FPGA Latency (ms)

Batch Size = 1 (Quantized)

59.1

63.3

69.0
71.5

67.0
69.6

72.8
73.7

https://arxiv.org/pdf/1908.09791.pdf

Measured results on FPGA

OFA for FPGA

A
rit

hm
et

ic
 In

te
ns

ity
 (

O
P

S
/B

yt
e)

0.0

12.5

25.0

37.5

50.0

ZU
3E

G
 F

P
G

A
(G

O
P

S
/s

)

0.0

20.0

40.0

60.0

80.0

MobileNetV2 MnasNet OFA (Ours)

40%
higher 57%

higher

Specialized NN architecture on specialized hardware architecture

Once-for-all, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf

Adapt to Newly Collected Data on the Edge

User Intelligent Edge Devices

New and Sensitive
Data

…

● Customization: AI systems need to continually adapt to new data collected from the sensors.

TinyTL, NeurIPS’20

https://tinyml.mit.edu

Cloud-based Learning

User Intelligent Edge Devices

New and Sensitive
Data

…

Cloud Server

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors.

New Training Data

Updated Model

TinyTL, NeurIPS’20

https://tinyml.mit.edu

On-device Learning

User Intelligent Edge Devices

New and Sensitive
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors.

● Security: Data cannot leave devices because of security and regularization.

TinyTL, NeurIPS’20

https://tinyml.mit.edu

• Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

Training Memory is much Larger than Inference

Raspberry Pi 1 DRAM
256MB

0

225

450

675

900

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 16

TinyTL, NeurIPS’20

https://tinyml.mit.edu

• Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

• Edge devices are energy-constrained. Failing to fit the training process into the
energy-efficient on-chip SRAM will significantly increase the energy cost.

AMD EPYC CPU SRAM
128MB

Training Memory is much Larger than Inference

0

225

450

675

900

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 16

TinyTL, NeurIPS’20

https://tinyml.mit.edu

0

400

800

1200

1600

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

Activation is the Memory Bottleneck, not Parameters

• Activation is the main bottleneck for on-device learning, not parameters.

13.9x larger

Activation is the
main bottleneck,
not parameters.

TinyTL, NeurIPS’20

https://tinyml.mit.edu

Activation is the Memory Bottleneck, not Parameters

• Activation is the main bottleneck for on-device learning, not parameters.

• Previous methods focus on reducing the number of parameters or
FLOPs, while the main bottleneck does not improve much.

0

400

800

1200

1600

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does
not improve much.

13.9x larger

Activation is the
main bottleneck,
not parameters.

4.3x

1.1x

TinyTL, NeurIPS’20

https://tinyml.mit.edu

0

10

20

30

#Trainable Param (M)

Related Work: Parameter-Efficient Transfer Learning

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

13x

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

0

10

20

30

#Trainable Param (M)

Related Work: Parameter-Efficient Transfer Learning

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective

when only considering the parameter-efficiency.

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

12x

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Related Work: Parameter-Efficient Transfer Learning

1.8x

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective

when only considering the parameter-efficiency. But the memory saving is
limited.

Parameter-efficiency does
not directly translate to
memory-efficiency

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Related Work: Parameter-Efficient Transfer Learning

1.8x
Parameter-efficiency does
not directly translate to
memory-efficiency

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective

when only considering the parameter-efficiency. But the memory saving is
limited. The accuracy loss is still significant.

12% loss

TinyTL: Memory-Efficient Transfer Learning

0

200

400

600

800

Memory Cost (MB)

6x

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective

when only considering the parameter-efficiency. But the memory saving is
limited. The accuracy loss is still significant.

1.8x

12% loss

Updating Weights is Memory-expensive While
Updating Biases is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward:

Backward:

Updating weights requires storing intermediate activations
Updating biases does not

Linear
Layer

TinyTL, NeurIPS’20

https://tinyml.mit.edu

Updating Weights is Memory-expensive While
Updating Biases is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward:

Backward:

Linear
Layer

• Convolution layers and normalization layers (e.g., BN) can be viewed as special types of
linear layers. Thus, this property is also applicable to them.

Updating weights requires storing intermediate activations
Updating biases does not

TinyTL, NeurIPS’20

https://tinyml.mit.edu

Updating Weights is Memory-expensive While
Updating Biases is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ReLU is memory-efficient
Smooth activation functions (e.g., sigmoid, swish, hard-swish) are memory-expensive

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Fine-tune Bias Only

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

weight bias

0

80

160

240

320

400
Full BN+Last Bias+Last

Memory Cost (MB)

12x
smaller

Freeze weights, only fine-tune biases
=> save 12x memory

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Fine-tune Bias Only

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

weight bias

Freeze weights, only fine-tune biases
=> save 12x memory, but also hurt the accuracy

70

76

82

88

94
Full BN+Last Bias+Last

Cars Top1 (%)

16.8%
acc loss

0

80

160

240

320

400
Full BN+Last Bias+Last

Memory Cost (MB)

12x
smaller

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity
• Key principle - keep activation size small

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity
• Key principle - keep activation size small

1. Reduce the resolution

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity
• Key principle - keep activation size small

1. Reduce the resolution
2. Avoid inverted bottleneck

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity
• Key principle - keep activation size small

1. Reduce the resolution
2. Avoid inverted bottleneck

(1/6 channel, 1/2 resolution, 2/3 depth => ~4% activation size)

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

weight bias

0

80

160

240

320

400
Full BN+Last Bias+Last LiteResidual+Bias+Last

Memory Cost (MB)
70

76

82

88

94

Cars Top1 (%)

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

Model Compression on Fixed Parameters

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

weight bias

Lite residual learning (a generalized bias module)

• Apply model compression (pruning, quantization) to reduce the
parameter size for fixed parameters.

TinyTL, NeurIPS’20

https://tinyml.mit.edu

• TinyTL provides 4.6x memory saving without accuracy loss.

• [1] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." BMVC 2014.
• [2] Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.
• [3] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." CVPR 2019.

45

55

65

75

85

95

0 75 150 225 300

TinyTL Fine-tune BN+Last [1] Fine-tune Last [2] Fine-tune Full Network [3]

Training Memory (MB)

4.6x saving

Memory Saving

C
ar

s
To

p1
 (%

)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

Memory Saving

• On different datasets, TinyTL provides up to 6.5x memory saving without accuracy loss.

• [1] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." BMVC 2014.
• [2] Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.
• [3] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." CVPR 2019.

Training Memory (MB)

88

90

92

94

96

98

0 100 200 300 400
65

69

73

77

81

85

0 100 200 300 400
Training Memory (MB)

Fo
od

 T
op

1
(%

)

6.5x saving
4.5x saving

45

55

65

75

85

95

0 75 150 225 300

TinyTL Fine-tune BN+Last [1] Fine-tune Last [2] Fine-tune Full Network [3]

Training Memory (MB)

4.6x saving

C
ar

s
To

p1
 (%

)

Fl
ow

er
s

To
p1

 (%
)

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL enables in-cache training

• TinyTL (tiny transfer learning) supports batch 1 training by group normalization.
• Together with the lite residual model, it further reduces the training memory cost

to 16MB (fits L3 cache), enabling fitting the training process into cache, which is
much more energy-efficient than training on DRAM.

45

55

65

75

85

95

0 75 150 225 300

TinyTL (batch size 1) TinyTL Fine-tune Full Network

Training Memory (MB)

C
ar

s

Typical L3 Cache Size: 16MB

TinyTL, NeurIPS’20

https://tinyml.mit.edu

TinyTL: Reduce Memory, not Parameters  
for Efficient On-Device Learning

Project Page: http://tinyml.mit.edu

User Intelligent Edge Devices

New and Sensitive
Data

…

TinyTL

45

55

65

75

85

95

0 75 150 225 300
Training Memory (MB)

C
ar

s

Typical L3 Cache Size: 16MB

TinyTL, NeurIPS’20

https://tinyml.mit.edu

