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• Memory: 32GB

• Computation:  FLOPS1012

Cloud AI Mobile AI Tiny AI (AIoT)

• Memory: 4GB

• Computation:  FLOPS109

• Memory: 100 KB

• Computation: <  FLOPS106

Challenge: Efficient Inference on Diverse Hardware Platforms 

• Different hardware platforms have different resource constraints. We need to customize 
our models for each platform to achieve the best accuracy-efficiency trade-off, 
especially on resource-constrained edge devices. 

less

resource

less

resource
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Design Cost (GPU hours)

200

The design cost is calculated under the assumption of using MobileNet-v2.


For devices:

    For search episodes: // meta controller

        For training iterations:

            forward-backward();

        If good_model: break;

  For post-search training iterations:

        forward-backward();

2019

Challenge: Efficient Inference on Diverse Hardware Platforms 
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The design cost is calculated under the assumption of using MnasNet.

[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

Design Cost (GPU hours)

40K

For devices:

    For search episodes: // meta controller

        For training iterations:

            forward-backward();

        If good_model: break;

  For post-search training iterations:

        forward-backward();

Expensive

Expensive

2019

Challenge: Efficient Inference on Diverse Hardware Platforms 



For devices:

    For search episodes: // meta controller

        For training iterations:

            forward-backward();

        If good_model: break;

  For post-search training iterations:

        forward-backward();
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Diverse Hardware Platforms

The design cost is calculated under the assumption of using MnasNet.

[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

160K

40K

Design Cost (GPU hours)

2019 2017 2014 2010

Expensive!

Expensive!

Challenge: Efficient Inference on Diverse Hardware Platforms 
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Diverse Hardware Platforms

Cloud AI (  FLOPS)1012 Mobile AI (  FLOPS)109 Tiny AI (  FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

The design cost is calculated under the assumption of using MnasNet.

[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

For many devices:

    For search episodes: // meta controller

        For training iterations:

            forward-backward();

        If good_model: break;

  For post-search training iterations:

        forward-backward();

Expensive!!

Expensive!!

Challenge: Efficient Inference on Diverse Hardware Platforms 
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Diverse Hardware Platforms

Cloud AI (  FLOPS)1012 Mobile AI (  FLOPS)109 Tiny AI (  FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to 

Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

For many devices:

    For search episodes: // meta controller

        For training iterations:

            forward-backward();

        If good_model: break;

  For post-search training iterations:

        forward-backward();

Expensive!!

Expensive!!

Challenge: Efficient Inference on Diverse Hardware Platforms 



Evolved Transformer ICML’19, ACL’19

We need Green AI: 
Solve the Environmental Problem of NAS

Ours 52  4 orders of magnitude  ACL’20
“Hardware-Aware Transformer”

TinyML comes at the cost of BigML
(inference) (training/search)

Problem:



Once-for-all, ICLR’20 9

Diverse Hardware Platforms

…

Once-for-All Network

Cloud AI (  FLOPS)1012 Mobile AI (  FLOPS)109 Tiny AI (  FLOPS)106

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to 

Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

Challenge: Efficient Inference on Diverse Hardware Platforms 

https://arxiv.org/pdf/1908.09791.pdf
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OFA: Decouple Training and Search
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Conventional NAS  
with meta controller

For devices:

    For search episodes: // meta controller

        For training iterations:

            forward-backward();

        If good_model: break;

    For post-search training iterations:

        forward-backward();

Expensive

Expensive

=>

Once-for-All:

For OFA training iterations:

    forward-backward();


For devices:

    For search episodes:

        sample from OFA;

        If good_model: break;

    directly deploy without training;

Expensive
training

search
decouple

Light-Weight

Light-Weight

https://arxiv.org/pdf/1908.09791.pdf
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Once-for-All Network:  
Decouple Model Training and Architecture Design
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once-for-all network

https://arxiv.org/pdf/1908.09791.pdf


Once-for-all, ICLR’20

Once-for-All Network:  
Decouple Model Training and Architecture Design

12

once-for-all network

https://arxiv.org/pdf/1908.09791.pdf
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Once-for-All Network:  
Decouple Model Training and Architecture Design
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once-for-all network

https://arxiv.org/pdf/1908.09791.pdf
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…

once-for-all network

Once-for-All Network:  
Decouple Model Training and Architecture Design

https://arxiv.org/pdf/1908.09791.pdf


Once-for-all, ICLR’20

Challenge: how to prevent different subnetworks 
from interfering with each other?

15

https://arxiv.org/pdf/1908.09791.pdf


Once-for-all, ICLR’20

Solution: Progressive Shrinking

16

• Training once-for-all network is much more challenging than training a normal 
neural network given so many sub-networks to support.


• Progressive Shrinking can support more than  different sub-networks in a 
single once-for-all network, covering 4 different dimensions: resolution, kernel 
size, depth, width. 


1019

https://arxiv.org/pdf/1908.09791.pdf
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Train the 

full model

Shrink the model

(4 dimensions)

Jointly fine-tune 
both large and 

small sub-networks

• Small sub-networks are nested in large sub-networks.

• Cast the training process of the once-for-all network as a progressive shrinking and 

joint fine-tuning process.

once-for-all

network

Progressive Shrinking

Solution: Progressive Shrinking
• Training once-for-all network is much more challenging than training a normal 

neural network given so many sub-networks to support.

• Progressive Shrinking can support more than  different sub-networks in a 

single once-for-all network, covering 4 different dimensions: resolution, kernel 
size, depth, width. 


1019

https://arxiv.org/pdf/1908.09791.pdf
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Connection to Network Pruning
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Train the 

full model

Shrink the model 
(only width)

Fine-tune  
the small net

single pruned

network

Network Pruning

Train the 

full model

Shrink the model

(4 dimensions)

Fine-tune  
both large and 
small sub-nets

once-for-all

network

• Progressive shrinking can be viewed as a generalized network pruning with much 
higher flexibility across 4 dimensions.

Progressive Shrinking

https://arxiv.org/pdf/1908.09791.pdf
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Performances of Sub-networks on ImageNet
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Sub-networks under various architecture configurations

D: depth, W: width, K: kernel size

• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.

https://arxiv.org/pdf/1908.09791.pdf
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Accuracy / Latency Predictor

20

Once-for-All Network
 

RMSE ~0.2%
Acc Dataset


[Architecture, Accuracy]

Latency Dataset

[Architecture, Latency]

Accuracy Predictor

Latency Predictor

Evolutionary

Architecture Search Specialized 


Sub-Network

https://arxiv.org/pdf/1908.09791.pdf


OFA: 80% Top-1 Accuracy on ImageNet
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Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation
595M MACs

80.0% Top-1

Model Size 

• Once-for-all sets a new state-of-the-art 80% ImageNet top-1 accuracy under 
the mobile vision setting (< 600M MACs).

Once-for-all, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf


Accuracy & Latency Improvement
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• Training from scratch cannot achieve the same level of accuracy

Once-for-all, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf
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OFA Enables Fast Specialization on Diverse Hardware Platforms 
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Samsung S7 Edge Latency (ms)
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Measured results on                  FPGA

OFA for FPGA
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Once-for-all, ICLR’20
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Adapt to Newly Collected Data on the Edge

User Intelligent Edge Devices

New and Sensitive

Data

…

● Customization: AI systems need to continually adapt to new data collected from the sensors.

TinyTL, NeurIPS’20

https://tinyml.mit.edu


Cloud-based Learning

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors. 

New Training Data

Updated Model

TinyTL, NeurIPS’20

https://tinyml.mit.edu


On-device Learning

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors. 


● Security: Data cannot leave devices because of security and regularization.

TinyTL, NeurIPS’20

https://tinyml.mit.edu


• Edge devices have tight memory constraints. The training memory footprint of 
neural networks can easily exceed the limit. 

Training Memory is much Larger than Inference

Raspberry Pi 1 DRAM 
256MB
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Batch Size = 1
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TinyTL, NeurIPS’20

https://tinyml.mit.edu


• Edge devices have tight memory constraints. The training memory footprint of 
neural networks can easily exceed the limit. 


• Edge devices are energy-constrained. Failing to fit the training process into the 
energy-efficient on-chip SRAM will significantly increase the energy cost.

AMD EPYC CPU SRAM

128MB

Training Memory is much Larger than Inference
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ResNet-50 MbV2-1.4

Activation is the Memory Bottleneck, not Parameters

• Activation is the main bottleneck for on-device learning, not parameters. 

13.9x larger

Activation is the 
main bottleneck, 
not parameters.

TinyTL, NeurIPS’20

https://tinyml.mit.edu


Activation is the Memory Bottleneck, not Parameters

• Activation is the main bottleneck for on-device learning, not parameters.


• Previous methods focus on reducing the number of parameters or 
FLOPs, while the main bottleneck does not improve much. 
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1600

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does 
not improve much.

13.9x larger

Activation is the 
main bottleneck, 
not parameters.

4.3x

1.1x

TinyTL, NeurIPS’20

https://tinyml.mit.edu
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Related Work: Parameter-Efficient Transfer Learning

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
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Related Work: Parameter-Efficient Transfer Learning

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective 

when only considering the parameter-efficiency.
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Related Work: Parameter-Efficient Transfer Learning

1.8x

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective 

when only considering the parameter-efficiency. But the memory saving is 
limited.

Parameter-efficiency does 
not directly translate to 
memory-efficiency



0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Related Work: Parameter-Efficient Transfer Learning
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Parameter-efficiency does 
not directly translate to 
memory-efficiency

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective 

when only considering the parameter-efficiency. But the memory saving is 
limited. The accuracy loss is still significant.

12% loss



TinyTL: Memory-Efficient Transfer Learning
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• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last classifier head. Highly effective 

when only considering the parameter-efficiency. But the memory saving is 
limited. The accuracy loss is still significant.

1.8x

12% loss



Updating Weights is Memory-expensive While 
Updating Biases is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward: 

Backward: 

Updating weights requires storing intermediate activations

Updating biases does not

Linear

Layer

TinyTL, NeurIPS’20
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Updating Weights is Memory-expensive While 
Updating Biases is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward: 

Backward: 

Linear

Layer

• Convolution layers and normalization layers (e.g., BN) can be viewed as special types of 
linear layers. Thus, this property is also applicable to them.

Updating weights requires storing intermediate activations

Updating biases does not

TinyTL, NeurIPS’20

https://tinyml.mit.edu


Updating Weights is Memory-expensive While 
Updating Biases is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ReLU is memory-efficient

Smooth activation functions (e.g., sigmoid, swish, hard-swish) are memory-expensive 

TinyTL, NeurIPS’20

https://tinyml.mit.edu


TinyTL: Fine-tune Bias Only

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

weight bias
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12x 

smaller

Freeze weights, only fine-tune biases  
=> save 12x memory

TinyTL, NeurIPS’20
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TinyTL: Fine-tune Bias Only

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

weight bias

Freeze weights, only fine-tune biases  
=> save 12x memory, but also hurt the accuracy
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Cars Top1 (%)

16.8%

acc loss
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TinyTL, NeurIPS’20
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TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20
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TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20
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TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small


1. Reduce the resolution

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20
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TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small


1. Reduce the resolution

2. Avoid inverted bottleneck

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20
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TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small


1. Reduce the resolution

2. Avoid inverted bottleneck


(1/6 channel, 1/2 resolution, 2/3 depth => ~4% activation size)

weight bias

Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20

https://tinyml.mit.edu


TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

weight bias
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Lite residual learning (a generalized bias module)

TinyTL, NeurIPS’20
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Model Compression on Fixed Parameters

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

weight bias

Lite residual learning (a generalized bias module)

• Apply model compression (pruning, quantization) to reduce the 
parameter size for fixed parameters.
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• TinyTL provides 4.6x memory saving without accuracy loss. 

• [1] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." BMVC 2014.

• [2] Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.

• [3] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." CVPR 2019.
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Memory Saving

• On different datasets, TinyTL provides up to 6.5x memory saving without accuracy loss. 

• [1] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." BMVC 2014.

• [2] Mudrakarta, Pramod Kaushik, et al. "K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning." ICLR 2019.

• [3] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." CVPR 2019.
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TinyTL enables in-cache training

• TinyTL (tiny transfer learning) supports batch 1 training by group normalization.

• Together with the lite residual model, it further reduces the training memory cost 

to 16MB (fits L3 cache), enabling fitting the training process into cache, which is 
much more energy-efficient than training on DRAM.

45

55

65

75

85

95

0 75 150 225 300

TinyTL (batch size 1) TinyTL Fine-tune Full Network

Training Memory (MB)

C
ar

s

Typical L3 Cache Size: 16MB

TinyTL, NeurIPS’20

https://tinyml.mit.edu


TinyTL: Reduce Memory, not Parameters  
for Efficient On-Device Learning

Project Page: http://tinyml.mit.edu

User Intelligent Edge Devices

New and Sensitive

Data

…

TinyTL

45

55

65

75

85

95

0 75 150 225 300
Training Memory (MB)

C
ar

s

Typical L3 Cache Size: 16MB

TinyTL, NeurIPS’20

https://tinyml.mit.edu

