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Deep Learning Going “Tiny”

Cloud AI (ResNet) Mobile AI (MobileNet) Tiny AI (MCUNet)

Data centers 
Expensive 

Connection required 
Privacy issue

Smartphones 
Accessible 

Process locally

IoT Devices/ 
Microcontrollers 

Cheap, small, low-power 
Rapid growth 

- The future belongs to Tiny AI. 

- There are billions of IoT devices around the world based on microcontrollers

- Much cheaper, much smaller, almost everywhere in our lives. 

- If we can enable powerful AI algorithms on those IoT devices, we can greatly      

democratize AI and extend the applications of deep learning.



Microcontrollers

Background: The Era of AIoT on Microcontrollers (MCUs)
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Background: The Era of AIoT on Microcontrollers (MCUs)

Widely deployed

Microcontrollers



Background: The Era of AIoT on Microcontrollers (MCUs)

Microcontrollers

+



TinyML: Bring AI to IoT Devices

MIT researchers have developed a system, 
called MCUNet, that brings machine learning to 
microcontrollers. The advance could enhance the 
function and security of devices connected to the 
Internet of Things (IoT).   ——MIT News

- The first to achieve >70% 
ImageNet accuracy on 
commercial MCU. 

- Activation is the bottleneck,  
not weights 

- Design the design space, 
before neural architecture 
search 

- Co-design the NN with the 
inference engine

 tinyml.mit.edu

toy IoT applications large scale, powerful AI
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http://tinyml.mit.edu
http://connected
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Smaller child networks are 
nested in larger onesTrain once, get many

Fit diverse hardware constraints

Once-for-All Network

Cortex M7 
STM32H743

(512kB/2MB)

Cortex M4

STM32F412

(256kB/1MB)

Cortex M7 
STM32F746

(320kB/1MB)

ofa.mit.edu

http://ofa.mit.edu
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Once-for-All Network
Contains 1019 sub-networks, trained at the same time

https://hanlab.mit.edu/projects/ofa/demo/


Today’s NAS is too expensive w.r.t. carbon emission
Low marginal cost given new hardware platforms:  CPU/GPU/DSP/FPGA…

Once-for-All Network

• Six first-place finishes in top competitions in efficient AI

ofa.mit.edu

http://ofa.mit.edu
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Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf
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14x less computation

595M MACs 
80.0% Top-1

Model Size 

• OFA sets a new state-of-the-art 80% ImageNet top-1 accuracy for mobile vision (< 600M 
MACs). 

• OFA sets a world-record in the open division of MLPerf Inference Benchmark: 1.078M 
images per second on eight A100 GPUs

Once-for-All, ICLR’20
ofa.mit.edu

Consistently outperforms human baselines, world-record on MLPerf  
Turn-key solution for co-design

Once-for-All Network

https://mlcommons.org/en/inference-datacenter-10/
https://arxiv.org/abs/1908.09791
http://ofa.mit.edu


Award Winning Technology

5th Low-Power Computer Vision 
Challenge

CPU detection 
FPGA detection CPU classification CPU detection DSP Recognition

Visual Wake Words 
Challenge @CVPR 2019

MicroNet Challenge  
@NeurIPS 2019

SemanticKITTI

4th Low-Power Computer Vision 
Challenge

3th Low-Power Computer Vision 
Challenge

Visual Wake Words 
on TF-lite 

NLP track
Language Model

3D Semantic 
Segmentation



Industry Adoption

Deep Compression takes the performance of AI inference on Xilinx FPGA 
to the next level. Reduce model complexity by 5x to 50x with minimal 
accuracy impact.

HAQ: Hardware-Aware Automated Quantization with Mixed Precision is integrated by 
Intel OpenVINO Toolkit. Efficiently search over the bitwidth space for mixed-
precision machine learning inference (2, 4, 8 bits)

Once-for-All (OFA) Network adopbed by Alibaba received a world-record in the 
open division of MLPerf Inference Benchmark, achiveing 1.078M images per 
second on eight A100 GPUs

Proxyless Neural Architecture Search, an efficient neural architecture search 
algorithm with light-weight model for mobile AI is integrated by AWS AutoGluon 
and Facebook PyTorch. 

Once-for-All (OFA) Network adopbed by Maxim Integrated provides 6% accuracy 
increase in image recognition and 2% accuracy increase in speech command 
recognition, with >100x energy efficiency compared to Cortex-M4.

https://arxiv.org/pdf/1811.08886.pdf
https://github.com/openvinotoolkit/nncf/blob/develop/docs/compression_algorithms/Quantization.md
http://ofa.mit.edu/
https://mlcommons.org/en/inference-datacenter-10/
http://pr
https://autogluon.mxnet.io/tutorials/nas/enas_proxylessnas.html
https://pytorch.org/hub/pytorch_vision_proxylessnas/
http://ofa.mit.edu/


TinyML Demo: Face Mask Detection on MCU

• Detecting faces & masks  

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 



3D LiDAR Sensor 3D Point Cloud: 2M points/s

30fps

[Liu et al. ICRA’21]TinyML for Driving

Demo:

In collaboration with Daniela Rus

Too slow to drive

Real time!

fps

fps

fps



TinyML for Video Recognition TSM, ICCV 2019

• Each channel learns different semantics
• Channel 5: Move something away

• Channel 162: Wiping

LED Bulb Level!

https://arxiv.org/pdf/1811.08383.pdf


User Intelligent Edge Devices

New and Sensitive 
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors.  

● Security: Data cannot leave devices because of security and regularization. 

● We can reduce the training memory from 300MB to 16MB

Tiny Transfer Learning

tinyml.mit.edu

http://connected


Data Is Expensive

FFHQ dataset: 70,000 selective post-processed human faces ImageNet dataset: millions of images from diverse categories

“in artificial intelligence, the focus would not be on further refining current algorithms, but rather on developing 
profoundly new approaches that would enable machines to "learn" using much smaller data sets ― a 

fundamental advance that would eliminate the need to access immense data sets. Success in this work would 
have a double benefit: seeding economic benefits for the U.S. while reducing the pressure to weaken privacy 

and civil liberties in pursuit of more "training" data.” 
― L. Rafael Reif



Improve Data-Efficiency
Train GAN with only 100 Images (used to require 70,000 images)

Without our technique:

With our technique:
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Train GANs with only 100 Images

Smooth interpolation, generalize well 
https://github.com/mit-han-lab/data-efficient-gans

https://github.com/mit-han-lab/data-efficient-gans


ML is Revolutionizing Hardware Design

• Fast:  
• Inference can be accelerated by GPUs and AI accelerators 

• Data-Driven: 
• The more data, the higher accuracy; exceed traditional methods 
• Continuous learning



ML is Revolutionizing Hardware Design

ML for Physical 
Design & 

Manufacture

“DreamPlace”1 for placement 
“LithoGAN”2 for lithography modeling 

“Google’s Chip Design AI”3 for floorplaning

1Lin, Y., Dhar, S., Li, W., Ren, H., Khailany, B., & Pan, D. Z. DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement. In DAC 2019 
2Ye, W., Alawieh, M. B., Lin, Y., & Pan, D. Z. Lithogan: End-to-end lithography modeling with generative adversarial networks. In DAC 2019. 
3Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori, E., Wang, S., ... & Nazi, A. (2020). Chip Placement with Deep Reinforcement Learning. arXiv preprint arXiv:2004.10746. 
4Zhang, G., He, H., & Katabi, D. (2019, May). Circuit-GNN: Graph Neural Networks for Distributed Circuit Design. In International Conference on Machine Learning (pp. 7364-7373). 
5Wang, H., Yang, J., Lee, H. S., & Han, S. (2018). Learning to design circuits. NeurIPS 2018, ML for System Workshop. 
6Liou, G. H., Wang, S. H., Su, Y. Y., & Lin, M. P. H. (2018, July). Classifying Analog and Digital Circuits with Machine Learning Techniques Toward Mixed-Signal Design Automation. In SMACD 2018 
7Chen, J., Alawieh, M. B., Lin, Y., Zhang, M., Zhang, J., Guo, Y., & Pan, D. Z. (2020). Powernet: SOI Lateral Power Device Breakdown Prediction With Deep Neural Networks. IEEE Access 
8Mao, H., Alizadeh, M., Menache, I., & Kandula, S.. Resource management with deep reinforcement learning. In15th ACM Workshop on Hot Topics in Networks. 
9Servadei, L., Mosca, E., Werner, M., Esen, V., Wille, R., & Ecker, W. Combining Evolutionary Algorithms and Deep Learning for Hardware/Software Interface Optimization.

ML for Circuits 
Design

“Circuits-GNN”4 for RF circuits 
“Learning to Design Circuits”5 for Analog IC 

“Analog and Digital Circuits Classifier”6 for sub-circuits classification

ML for System-Level 
Modeling & 

Optimization

“PowerNet”7 for power modeling 
“Resource Management with RL”8 for many-core resources management 
“Combine Evolutionary with Deep Learning”9 for Interface Optimization



GCN-RL Circuit Designer
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[Wang et al. DAC’20]



GCN RL Agent: Circuit is a Graph

Aggregation

Receptive Field: 
Neighbors

Receptive Field:  
Neighbors + 
Neighbors of neighbors

Layer 0 Layer 1 Layer 2

[Wang et al. DAC’20]



GCN RL Agent
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Apply an Actor-Critic RL 
agent with GCN

Actor: Generates the sizings
Critic: Emulates the real simulator 

environment. 
Estimates the FoM of the sizings 
Provides gradients for weights 

update

[Wang et al. DAC’20]



GCN-RL Achieves Highest FoM

GCN-RL has highest FoM and fast converging speed 
Graph info improves FoM (GCN-RL v.s. NG-RL)

[Wang et al. DAC’20]



GCN-RL with Transfer Learning
180nm
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warm-up explore

warm-up explore warm-up explore warm-up explore

warm-up explore warm-up explore

GCN-RL with Transfer Learning
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ML for Digital Architecture Design [Lin et al. DAC’21]
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Fig. 1: Neural Accelerator Architecture Search.

over the large design space, NAAS leverages the biologically-
inspired evolution-based algorithm rather than meta-controller-
based algorithm to improve the sample efficiency. It keeps
improving the quality of the candidate population by ruling
out the inferior and generating from the fittest. Thanks to the
low search cost, NAAS can be easily integrated with hardware-
aware NAS algorithm by adding another optimization level
(Figure 1), achieving the joint search.

Extensive experiments verify the effectiveness of our frame-
work. Under the same #PE and on-chip memory constraints,
the NAAS is able to deliver 2.6⇥, 4.4⇥ speedup and 2.1⇥,
1.4⇥ energy savings on average compared to Eyeriss [14],
NVDLA [15] design respectively. Integrated with Once-For-All
NAS algorithm [4], NAAS further improves the top-1 accuracy
on ImageNet by 2.7% without hurting the hardware perfor-
mance. Using the similar compute resources, NAAS achieves
3.0⇥, 1.9⇥ EDP improvements compared to Neural-Hardware
Architecture Search [12], and NASAIC [11] respectively.

II. NEURAL ACCELERATOR ARCHITECTURE SEARCH

Figure 1 shows the optimization flow of Neural Accelerator
Architecture Search (NAAS). NAAS explores the design space
of accelerators, and compiler’s mappings simultaneously.

A. Accelerator Architecture Search
a) Design Space: The accelerator design knobs can be

categorized into two classes:

1) Architectural Sizing: the number of processing elements
(#PEs), private scratch pad size (L1 size), global buffer
size (L2 size), and memory bandwidth.

2) Connectivity Parameters: the number of array dimensions
(1D, 2D or 3D array), array size at each dimension, and
the inter-PE connections.

Most state-of-art searching frameworks only contains archi-
tectural sizing parameters in their design space. These sizing
parameters are numerical and can be easily embedded into
vectors during search. On the other hand, PE connectivity is
difficult to encode as vectors since they are not numerical
numbers. Moreover, changing the connectivity requires re-
designing the compiler mapping strategies, which extremely
increase the searching cost. In NAAS, besides the architectural
sizing parameters which are common in other frameworks, we
introduce the connectivity parameters into our search space,
making it possible to search among 1D, 2D and 3D array
as well, and thus our design space includes almost the entire
accelerator design space for neural network accelerators.

b) Encoding: We first model the PE connectivity as the
choices of parallel dimensions. For example, parallelism in
input channels (C) means a reduction connection of the partial
sum register inside each PE. Parallelism in output channels
means a broadcast to input feature register inside each PE. The
most straight-forward method to encode the parallel dimension
choice is to enumerate all possible parallelism situations and
choose the index of the enumeration as the encoding value.
However, since the increment or decrement of indexes does not
convey any physical information, it is hard to be optimized.

To solve this problem, we proposed the “importance-based”
encoding method for choosing parallelism dimensions in
the dataflow and convert the indexing optimization into the
sizing optimization. For each dimension, our optimizer will
generate an importance value. To get the corresponding parallel
dimensions, we first collect all the importance value, then sort
them in decreasing order, and select the first k dimensions as
the parallel dimensions of a k-D compute array. As shown
in the left of Figure 3, the generated candidate is a 2D array
with size 16⇥ 16. To find the parallel dimension for this 2D
array candidate, The importance values are first generated for
6 dimensions in the same way as other numerical parameters
in the encoding vector. We then sort the value in decreasing
order and determine the new order of the dimensions. Since
the importance value of “C” and “K” are the largest two
value, we finally select “C” and “K” as the parallel dimensions
of this 2D array. The importance value of the dimension
represents the priority of the parallelism: a larger value indicates
a higher priority and a higher possibility to be paralleled in the
computation loop nest, which contains higher relativity with
accelerator design compared to indexes of enumerations.

For other numerical parameters, we use the straight-forward
encoding method. The whole hardware encoding vector is
shown in Figure 2, which contains all of the necessary
parameters to represent an accelerator design paradigm.

c) Evolution Search: We leverage the evolution strat-
egy [17] to find the best solution during the exploration. In

NAAS: Neural Accelerator Architecture Search
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ML for Blood Pressure Measurement
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mmHg
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Better software/hardware for AI

fewer engineers

less data

less computation TinyML

AI for better hardware design


