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Post-Quantum Cryptography

ServerClient

Post-Quantum Crypto

RSA, ECC, …

Quantum Adversary

❑ Current public key cryptography 

vulnerable to quantum attacks

❑ NIST Post-Quantum Crypto (PQC) 

standardization in progress

❑ Round 2 has 26 candidates:

▪ Lattice-based (9 KEM + 3 Sign)

▪ Code-based (7 KEM)

▪ Hash-based (1 Sign)

▪ Multivariate (4 Sign)

▪ Supersingular isogeny (1 KEM)

▪ Zero-knowledge proofs (1 Sign)
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Outline

❑ Lattice-Based Cryptography

❑ Efficient Hardware Implementation

❑ Chip Architecture

❑ Measurement Results

❑ Side-Channel Analysis

3 of 25



4 of 25

Lattices

Lattices – integer linear 

combinations of basis vectors

O

b1

b2



5 of 25

Lattices

Lattices – integer linear 

combinations of basis vectors

O

b1

b2

s

Shortest Vector Problem (SVP)
t

v

Closest Vector Problem (CVP)

≈ 2N time complexity for 

N dimensions

SVP

CVP



6 of 25

Learning with Errors
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Learning with Errors
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LWE
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Ring-LWE
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Circulant Matrix ⇒ Storage = 𝑂(𝑁)

Circular Convolution ⇒ Computation = 𝑂(𝑁 log2 𝑁)

4 1 11 10

1 11 10 4

11 10 4 1

10 4 1 11

?

?

?

?

?

?

?

?

2

0

5

1

+× = mod 13



10 of 25

Module-LWE
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Efficiency: LWE << Module-LWE < Ring-LWE



Computational Requirements

❑ Learning with Errors (LWE) and its variants:
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(Module Lattices)

❑ Computational requirements (apart from standard arithmetic):

▪ Modular arithmetic over various small primes

▪ Polynomial arithmetic for Ring-LWE and Module-LWE

▪ Sampling of matrices and polynomials from discrete distributions
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Sapphire Crypto-Processor

❑ Energy-efficient configurable lattice-crypto-processor

12 of 25



Area-Efficient NTT

❑ NTT memory banks using 2-port SRAMs 

have large area overheads

❑ Proposed 1-port SRAM-based NTT

❑ Based on constant geometry FFT data-flow 

❑ Polynomials split into four 1-port SRAMs

❑ Achieves > 30% area savings without loss in 

throughput

[Pease, J. ACM, 1968]
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Unified Butterfly
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Energy-Efficient Sampler
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Test Chip Overview

Chip Micrograph
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Protocol Implementations

CCA-KEM

LWE Frodo

Ring-LWE NewHope

Module-LWE CRYSTALS-Kyber

Signature

Ring-LWE qTesla

Module-LWE CRYSTALS-Dilithium

❑ NIST PQC Round 2 protocols implemented on test chip:
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❑ Computations shared between software and crypto hardware:

CPA-PKE / CCA-KEM:

Encoding / Compression

CCA Transform

CPA-PKE

Sign:

Encoding / Compression

Sign

S/W with SHA-3 H/W Accel Lattice-Crypto H/WS/W only



Protocol Evaluation Results

Order of magnitude improvement in energy-efficiency and performance

* Cycle counts for CCA-KEM-Encaps and Sign
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Protocol Evaluation Results

CCA-KEM-Encaps Sign

* Measured using test chip operating at 1.1 V and 72 MHz
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Side-Channel Analysis Setup

Test Board

Test Chip
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Timing and SPA Side-Channels

Binomial Sampling

Number Theoretic Transform

Polynomial Coefficient-wise Multiplication

Polynomial Coefficient-wise Addition

❑ All key building blocks constant-time by design

❑ Energy consumption of sampling and polynomial 

arithmetic follows a narrow distribution with coefficient 

of variation ≤ 0.5% (= 𝜎/𝜇)

❑ SPA attacks target polynomial arithmetic:

▪ Number Theoretic Transform

▪ Coefficient-wise Multiplication

▪ Coefficient-wise Addition

❑ SPA resistance of polynomial arithmetic evaluated 

using difference-of-means test with 99.99% 

confidence interval
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Masking for DPA Security

❑ Crypto core is programmable, hence masking can also be implemented

❑ Masked NewHope-CPA-PKE-Decrypt based on additively homomorphic property:

1. Generate secret message 𝜇𝑟

2. Encrypt 𝜇𝑟 to its corresponding ciphertext 𝑐𝑟 = (ො𝑢𝑟 , 𝑣𝑟
′)

3. Compute 𝑐𝑚 = ො𝑢 + ො𝑢𝑟 , 𝑣′ + 𝑣𝑟
′ where c = ො𝑢, 𝑣′ is the original ciphertext

4. Decrypt 𝑐𝑚 to obtain 𝜇𝑚 = 𝜇 ⊕ 𝜇𝑟 where 𝜇 is the original message

5. Recover original message as 𝜇 = 𝜇𝑚 ⊕ 𝜇𝑟

❑ Masked decryption using same hardware; 3× slower than unmasked version

❑ Masking increases decryption failure rate, which can be resolved by decreasing 

std. dev. 𝜎 of error distribution (at the cost of slightly lower security level)

[Reparaz et al, PQCrypto, 2016]
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Conclusion

❑ Configurable crypto-processor for LWE, Ring-LWE and Module-LWE protocols

❑ Area-efficient NTT, energy-efficient sampler and flexible parameters

❑ ASIC demonstration of NIST Round 2 CCA-KEM and signature protocols: 

Frodo, NewHope, Kyber, qTesla, Dilithium

❑ Order of magnitude improvement in performance and energy-efficiency 

compared to state-of-the-art software and hardware

❑ Hardware building blocks constant-time and SPA-secure by design; masking 

can also be implemented for DPA security
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